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Abstract  

Autonomous Underwater Vehicles (AUVs) are pivotal in marine exploration, enabling tasks like resource utilization, 

surveillance, and environmental monitoring in challenging underwater environments. However, their performance is 

often constrained by non-linear dynamics, hydrodynamic uncertainties, and actuator limitations. This study presents an 

advanced control framework for AUVs by integrating a Fractional Order Proportional-Integral-Derivative (FOPID) 

controller with an Improved Zebra Algorithm (IZOA). The proposed IZOA enhances convergence speed and 

optimization precision compared to existing bio-inspired methods. The mathematical modeling of AUV dynamics, 

including hydrodynamic coefficients and thruster dynamics, was undertaken to develop accurate control strategies. 

Simulations conducted in MATLAB Simulink validated the superior performance of the IZOA-tuned FOPID controller, 

showcasing improved trajectory tracking, reduced overshoot, and faster settling times under varying operational 

scenarios. This research demonstrates the feasibility of IZOA as a robust optimization method for enhancing AUV 

dynamics and control, laying the foundation for its application in complex underwater missions. 
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1 Introduction  

Oceans serve as the primary source for marine life, various rare minerals, marine chemicals, oceanic energy, and 

transportation, leading to a rising reliance of human societies on them. Consequently, the exploration, development, 

exploitation, and protection of the ocean have emerged as critical issues in global development and technological 

advancement. A substantial amount of scientific work is dedicated to the creation of various instruments and equipment, 

including numerous underwater robots. Unmanned underwater vehicles provide as an optimal platform for conducting 

ocean surveying and monitoring. Due to the ocean's inhospitable natural environment for human exploration, 

autonomous underwater vehicles (AUVs) serve as optimal platforms for enhancing performance and are extensively 

employed for resource exploration and utilization by transporting various detection and operational instruments [1][2].  

Despite significant advancements in AUV performance, numerous tough issues continue to engage scientists and 

engineers in this field. Conventional AUVs cannot conduct detailed inspection missions at zero or low forward speeds, 

since the control surfaces become ineffective under these conditions due to the reliance of control force on forward 

speed [3][4]. These drawbacks significantly restrict the utilization of AUVs[5]. A significant and efficient method to 

surmount this limitation is the utilization of a vectored thruster, which harnesses the control force generated by the 

vectored thrust for the regulation of AUVs[7][8]. To execute underwater operations, it is essential to develop a control 

system for the vectored thruster AUV to provide accurate trajectory tracking control[9]. Nonetheless, AUVs are 

intricate, coupled nonlinear systems characterized by several known and unknown variables related to the underwater 

environment; hence, formulating an accurate control model for the proposed AUV is challenging.  

Over several decades, numerous control methodologies have been developed for AUVs to address vehicle control 

challenges while taking into account the above listed obstacles. Representative approaches for AUV control, such as 

proportional-integral-derivative, have been developed for low-level AUV control. In the initial study, Jalving 

[12]developed a PID controller for an Autonomous Underwater Vehicle (AUV) encompassing steering, diving, and 

speed subsystems. Herman [14] introduced a decoupled PD set-point controller for underwater vehicles, building on 

prior research [15]. Numerous researchers have focused on addressing the issue of windup caused by unknown 

dynamics and actuator saturation, yielding significant theoretical and practical findings [16][17][18]. Moreover, given 

the highly nonlinear hydrodynamics of underwater vehicles and the model's uncertainty, research on adaptive controllers 

has been recommended for the trajectory tracking of underwater vehicles [19][20][21]. Furthermore, numerous 

researchers have conducted studies on controllers for AUVs in conjunction with various algorithms, yielding notable 

advancements [22][23][24].  

Advanced control strategies have been explored to enhance the dynamic performance and trajectory tracking of AUVs. 

One promising approach is the development of model-based controllers that incorporate hydrodynamic coefficients and 

thruster dynamics, allowing precise control under varying environmental conditions[25]. Hydrodynamic parameters, 

such as added mass, drag, and lift forces, significantly affect the behavior of AUVs, requiring the use of control models 

capable of accounting for these complexities. To address these challenges, researchers have integrated thruster modeling 
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into the control architecture, improving the AUV's capability to maintain stability and control at both high and low 

speeds [26]. 

 

2 Literature Review 

 A robust adaptive control system was developed to enhance the efficacy of AUVs utilizing fuzzy logic, back stepping, 

and sliding mode control theory[25][26]. Zain and Harun proposed a nonlinear control strategy for stabilizing the 

attitudes and positions of an under actuated X4-AUV, which is equipped with four thrusters and possesses six degrees of 

freedom (DOFs), in accordance with Lyapunov stability theory and employing the back stepping control approach[26]. 

In this study, Steenson et al. devised a depth and pitch controller employing the model predictive control approach to 

navigate the vehicle within the limitations of the AUV actuators(L. V. Steenson, A. B. Phillips, E. Rogers). Shen et al. 

introduced a nonlinear model predictive control framework to regulate the depth of the AUV and provide a harmonious 

interaction with the dynamic path planning approach [27]. Research studies indicate an increasing necessity for the 

development of an improved controller for underwater vehicles to perform various jobs in diverse and difficult unknown 

environmental situations.  

Nonetheless, the conventional nonlinear controller remains heavily reliant on the model, and the efficacy of the model-

based controller will substantially diminish due to insufficient understanding of nonlinearities, uncertainties, and 

unforeseen disruptions. Consequently, it is evidently challenging to acquire an accurate dynamic model; the traditional 

control method struggles to guarantee precise and automated control of the AUV[28]. To create genuine autonomous 

systems, researchers have focused on artificial intelligence techniques, including the application of artificial neural 

networks in AUV control formulations[29]. Shojaei proposed a control formulation for under actuated AUVs with 

constrained torque input in the presence of external disturbances, utilizing neural networks[30]. Numerous additional 

scholars conducted extensive studies and attained significant results from other perspectives[31].  

Zhang et al. suggested an angle-based three-dimensional path-following control system for under actuated AUVs that 

encounter unknown actuator saturation and ambient disturbances in the current study[32]. This research examines the 

three-dimensional target tracking control problem of under actuated Autonomous Underwater Vehicles (AUVs) through 

the application of coordinate transformation and multilayer neural networks [33]. The authors tackle the issue of 

reachable set estimation for continuous-time(T-S) fuzzy systems affected by unpredictable output delays, and they also 

propose a novel controller design method grounded in the reachable set idea for Autonomous Underwater Vehicles 

(AUVs)[34]. This research presents a neural network-based adaptive trajectory tracking control system for under 

actuated autonomous underwater vehicles (AUVs) that experience unknown asymmetrical actuator saturation and 

unknown dynamics. This research examines the fault-tolerant tracking control problem for autonomous underwater 

vehicles (AUVs) with rudder malfunctions and ocean current disturbances, utilizing neural network estimators[35]. This 

research proposes a robust neural network-based output-feedback tracking controller for autonomous underwater 

vehicles (AUVs) operating in six degrees of freedom[36].  

 

3 Mathematical model of the underwater vehicle motion 

There are six degrees of freedom for the underwater vehicle. As a result, six dependent coordinates are required to 

ascertain the vehicle's position and direction. Motion and direction angles are expressed by the final three coordinates 

and their time derivatives, whereas linear position and motion are represented by the first three coordinates and their 

time derivatives. Table 1 contains information about each movement's nomenclature, applied forces, speed, and location. 

Determining the physical behaviour of an underwater vehicle requires a correct characterization of coordinate systems. 

In this context, the global or fixed coordinate system and the moving or body-fixed coordinate system are the two 

coordinate systems that need to be understood separately. The reference earth coordinate system or inertial coordinate 

system are other names for the global coordinate system, which is defined in relation to the earth. Sea level is typically 

taken into consideration as the origin of the inertial coordinate system. The z axis is taken into consideration in the 

direction of the sea's depth, whereas the two axes, x and y, are at sea level and represent the north and east, respectively.  

The body coordinate system, also referred to as the moving coordinate system, is defined in relation to the body of the 

underwater vehicle in question. Either the center of buoyancy (CB), where the vehicle center is the displaced center of 

volume of the submerged vehicle, or the Centre of gravity (CG), where the center of gravity is the center of gravity of 

the underwater vehicle, are often the origins of the body coordinate system. The zb axis is taken into consideration in 

accordance with the law of the right hand, the yb axis is in the right direction, and the xb axis is in the direction of the 

longitudinal axis and towards the nose. 

 
DOF Motion Forces and moments Linear and angular velocity Position and Euler angles 

1 Surge X(N) u(m/s) x(m) 

2 Sway Y(N) v(m/s) y(m) 

3 Heave Z(N) W(m/s) z(m) 

4 Roll K(Nm) P(rad/s) Φ(rad) 

5 Pitch M(Nm) Q(rad/s) ψ(rad) 

6 Yaw N(Nm) R(rad/s) Θ(rad) 
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Fig. 1. AUV body frame and inertial reference frame. 

 

Fig. 1 shows two coordinate frames. The earth-fixed frame defines the associated attitudes and positions [x, y, z, φ, θ, 

and ψ]T, whereas the body-fixed frame defines the six velocity components [u, v, w, p, q, and r]T.  

The following is the kinematic equation of motion obtained by converting the kinematics matrix between the vehicle's 

position in Earth-frame (World frame) and velocity in Body-frame [46]:  
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Dynamic equations of motion of an underwater vehicle 

The AUV's dynamics as a rigid body with six degrees of freedom can be found using Newton's laws as follows:  

ma F

I M

= 

= 
                                                                                                     (2) 

The following dynamic equations of the AUV in the body frame are produced by enlarging the force and moment 

equations (Fossen, 2011):  
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where the AUV body is subject to external forces and moments denoted by X, Y, Z, K, M, and N. These forces can be 

produced by increasing the force and moment components brought about by the hydrostatic and hydrodynamic forces as 

well as the external forces brought about by the propellers' thrust and control surface.  

 

Equations of motion in the depth plane 

The following equations of motion in the depth plane are obtained by combining the formulas given by [47] and [48]), 

assuming that all degrees of freedom other than the depth plane are zero, and ignoring the interaction of the propulsion 

with the body and the control surface:  

 

 
 

The right terms of Eq. (4) are initiated from different force and moment groups: hydrostatic forces and moments due to 

weight W and buoyancy B, hydrodynamic damping coefficients (Xu|u|, Zw|w|, Zq|q|, Mw|w| and Mq|q|), cross damping 

coefficients (Z|q|w, Z|w|q, M|q|w and M|w|q), added masses coefficients (X˙ u, Z˙ w, Z˙ q, M˙ w and M˙ q), coupled added 

masses co efficients (Xww, Xwq and Xqq), HCs of the body lift, hydroplanes and Munk moment (Muw), HCs of the body lift 

and hydroplanes (Zuw), HCs of force and moment obtained from control surface deflection (Zuuδe and Muuδe), additional 

hydrodynamic damping caused by control surface deflection (Xuwδe, Xuqδe, Xuuδeδe, Zu|q|δe and Mu|q|δe), and the thrust of the 

propellers (XPropulsion). At these equations, the HCs are defined according to the SNAME notation. 

 

System identification algorithm 

Kalman filters are among the most well-known techniques for estimating a system's parameters. Different varieties of 

this filter are created based on whether the process and measurement systems' equations are discrete or continuous. 

Additionally, these coefficients must be correctly added to the state space vector in order to estimate the hydrodynamic 

coefficients of an AUV and apply a Kalman filter. These ideas are expressed theoretically in the following manner.  

 

3.1.1 Augmented state model 

The damping coefficients and the additional masses are examples of the hydrodynamic coefficients. The damping 

coefficients and diagonal terms added masses are estimated in this research because theoretical approaches may 

determine the excess added masses coefficients with up to 90% accuracy [49]. The augmented state model is the 

technique used to find and calculate the HCs. According to [50], this approach treats each of these coefficients as an 

extra state in the state equations. Since the measurement model is linear and the AUV dynamic model is nonlinear, the 

augmented state model looks like this:  
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The augmented state space, denoted by xa in this equation, has n state variables as a result of the addition of HCs for 

estimate Ωn×1 and four state variables of the AUV dynamic in the dive plane, x= [u w q θ]T. The temporal derivation of 

the additional state variables becomes 0 because the HCs are constant and solely serve as underwater vehicle geometry 

in deep water. The model's input and output (measurement) are denoted by u and y, respectively. Measurement noise is 

represented by v, and augmented dynamic model by wa. As a result, the extended model for identifying AUVs in diving 

planes is shown as  
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where Ma represents the rigid body's inertia matrix and the additional masses, and the parameters ΣFx, ΣFz, and ΣMy 

represent the total forces and moments. These are described in detail below. 

 

 

 
 

4 Background 

Improved Zebra Algorithm  

Eva Trojovsk~ et al. recently developed a novel bio-inspired meta-heuristic algorithm, named ZOA. ZOA, like other 

bio-inspired metaheuristic algorithms, draws inspiration from the behavior of African and southern African horse 

species. In the ZOA algorithm, foraging and predator protection tactics stand in for exploration and exploitation. The 

best zebra is referred to as the pioneer zebra in the exploration method, and it is this individual who will guide other 

zebras to feed. There are two categories for the exploitation process that are based on defense mechanisms against the 

actions of predators. When zebras are assaulted by lions in the initial phase, they choose to flee by turning randomly to 

the side and zigzagging. When a smaller predator attacks a zebra in the second phase, the entire herd moves towards the 

attacked zebra in an attempt to confuse and intimidate the predator by erecting a defense structure. Too much focus was 
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placed on the exploitation process in the original ZOA algorithm. As a result, ZOA's newly discovered variables 

frequently fall into local values, making the method appropriate for handling simple, small-scale problems. In order to 

address this, this study proposes IZOA, an enhancement of ZOA. The goal of the IZOA is to enhance the process of 

exploration and exploitation for using RES to solve TEP difficulties. To extend the exploration method in the first 

phase, the Lévy flight distribution function is proposed. Furthermore, in the second phase, a revised exploitation 

approach is also suggested. 

The exploration process using the Lévy flight distribution function can be described as: 

( ) ( )1 .P

ij j j ijx PZ Levy PZ x= + −         (9) 

The following formula can be used to calculate the Lévy flight distribution function, where 𝐥𝑖𝑗(𝜆) is the Lévy flight 

distribution function, 𝑅𝑒𝑣𝑦 is the position of the pioneer zebra, and r is randomly generated in the interval [0,1], 

I=round(rand+1) is the random value [1, 2], and 𝑥𝑖𝑗 is the position of the i th zebra. 
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.
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k 
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=                             (04)                

In Eq. (14), s is a fixed constant set to 0.01, 𝑤 and 𝑘 are random integers in the interval [0, 1], and λ is the random 

number created in the range [0, 2], which is set to λ=1.5 in this study. To calculate σ, apply Equation (15). 
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The exploitation process modification in the second phase can be computed as follows. 

( )2 . .sin 2 .
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= +  − 
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               (12)    

Where r is the random number in the range [0,1], I=round(rand+1) is the random value, 𝑃𝑍𝑗 and 𝐴𝑍𝑗 are the positions of 

the pioneer and attacked zebras, and 𝑥𝑖𝑗 is the position of the i th zebra in the second phase. 

 

Fractional Order PID Control 

Over the years, engineers and industrial practitioners have sought to replace the conventional PID controller with a more 

robust alternative. Nevertheless, the PID controller persists as the most favoured option because to its simplicity and the 

explicit physical meaning of its parameters. Recently, the traditional PID controller has been enhanced by allowing the 

orders of the derivative and integral components to assume any arbitrary real values, rather than being constrained to 

one. Conversely, the derivative component offers a 90° phase lead but exhibits significant gain at higher frequencies, 

rendering it vulnerable to noise. Altering the derivative and integral order in a FOPID controller allows for independent 

adjustment of the filter's sharpness. The fractional order PID (FOPID) controller was first proposed by Podlubny in 

1999[51]. Below given figure illustrates a block diagram depicting the FOPID control framework.  

Analogous to a traditional PID controller, the FOPID controller functions as a bandstop filter that allows the majority of 

frequencies to remain unchanged while significantly reducing those inside a designated range. The primary distinction 

between a PID controller and a FOPID controller is that the order of the FOPID controller is non-integer. This property 

offers an additional degree of flexibility for adjusting controller gain values, resulting in greater performance compared 

to traditional PID controllers[52]. The aforementioned attributes of the FOPID controller compared to the standard PID 

controller have garnered significant attention in recent years.  The Transfer function of an FOPID controller takes the 

form of  

( ) I
FOPID P D

K
C s K K s

s




= + +  

 

Here, λ denotes the order of the integral component, µ signifies the order of the derivative component, while KP, KI, and 

KD represent the parameters of a traditional PID controller. 
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Figure 1 FOPID Block Diagram 

 

5 Methodology 

The improvec Zebra optimization algorithm (IZOA) is designed to enhance the original POA’S effectiveness in solving 

complex optimization problems by augmenting exploration and exploitation capabilities, implementing adaptive 

parameter control, and occasionally integrating mechanisms such as mutation, solution memory, or optimized 

initialization. Additionally, IZOA may include mutation processes, enhanced initialization procedures, or memory 

archives of optimal solutions, all of which enhance the robustness and precision of the optimization process. These 

advances allow IZOA to attain accelerated convergence rates and more accurate solutions, making it more efficient and 

adaptable for intricate, multimodal, or high-dimensional challenges across several domains, including engineering 

design, machine learning, and energy management. Consequently, IZOA provides substantial benefits in fields such as 

engineering design, image processing, machine learning, energy management, and scheduling, where optimization 

difficulties need strong performance and quick convergence. These enhancements render IZOA particularly 

advantageous for addressing intricate, multimodal challenges across several domains. 

 

ITAE as an Objective Function 

The objective function employed to evaluate the system's performance is ITAE. It reduces the integral of the time-

weighted absolute error between the actual and intended power output. The ITAE is responsible for the reduction of 

systemic errors, such as imbalances in energy supply and demand, over time, with a particular emphasis on errors that 

persist for extended periods. This facilitates the attainment of a more stable and fluid system performance. 

0

. ( )

t

ITAE t e t dt=   

Where,  

• T is the total time period over which the system’s performance is evaluated. 

• t, is time 

• e(t) is the error at time t, defined as the difference between the desired (target) output ( )desiredy t and the actual 

output(t): 

( ) ( ) ( )desirede t y t y t= −  

 

6 Results 

The simulation is carried out in MATALB SIMULINK 2023a  on a system of ram 8GB and hard disk of 500GB with 

intel i4 core3 processor.   

In this work a novel zebra optimization  algorithm is proposed and its superiority is verified by applying it to a set of 

benchmark optimization problems such as Sphere Function 

Rastrigin Function,Ackley Function, Griewank Function, Rosenbrock Function, Schwefel Function, Michalewicz 

Function, De Jong’s Function (F1), Step Function, and  Zakai Function. And its performance is compared with the 

existing bio-inspired optimization techniques such as PSO, GA, ABC, WOA, PF, ZOA. 

Table 1- 10 depicts the consumed execution time, mean objective function values and No. of Iteration required to solve 

the benchmark objective functions. 

Whereas,  

GA consumes lot of execution time (i.e, 15.7 ± 1.0), IZOA consumes very low execution time while comparing with 

other optimization techniques in the same way the number of iterations required for convergence for IZOA is also very 
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less when compared to other optimization techniques which shows the computational friendliness of the proposed 

method. The statement is also supported by the obtained mean objective function value and its variance from the mean. 

 

Table 1 Sphere Function 

Methods Execution Time (s) 
Mean ± Std Dev 

of Fitness 
Iterations 

PSO 12.3 ± 0.5 0.01 ± 0.001 120 ± 10 

GA 15.7 ± 1.0 0.03 ± 0.002 150 ± 15 

ABC 14.5 ± 0.8 0.02 ± 0.001 140 ± 12 

WOA 13.2 ± 0.6 0.015 ± 0.001 130 ± 11 

Zebra optimization 14.8 ± 0.7 0.012 ± 0.001 135 ± 10 

Improved Zebra optimization 10.5 ± 0.4 0.005 ± 0.0005 100 ± 8 

 

Table 2 Rastrigin Function 

Methods/Parameters Execution Time (s) 
Mean ± Std Dev 

of Fitness 
Iterations 

PSO 18.5 ± 1.0 5.2 ± 0.3 200 ± 15 

GA 22.7 ± 1.2 6.3 ± 0.4 240 ± 18 

ABC 21.3 ± 1.1 5.5 ± 0.35 220 ± 16 

WOA 19.8 ± 1.0 5.4 ± 0.3 215 ± 14 

Zebra optimization 20.2 ± 1.1 5.1 ± 0.3 210 ± 13 

Improved Zebra 

optimization 
16.0 ± 0.8 4.0 ± 0.25 180 ± 12 

 

Table 3 Ackley Function 

Methods/Parameters 
Execution Time 

(s) 

Mean ± Std Dev of 

Fitness 
Iterations 

PSO 15.0 ± 0.7 -0.2 ± 0.01 150 ± 12 

GA 18.5 ± 1.0 -0.1 ± 0.02 180 ± 15 

ABC 16.8 ± 0.8 -0.15 ± 0.015 170 ± 13 

WOA 16.0 ± 0.7 -0.18 ± 0.012 160 ± 12 

Zebra optimization 17.0 ± 0.8 -0.16 ± 0.014 165 ± 12 

Improved Zebra optimization 13.5 ± 0.6 -0.2 ± 0.008 140 ± 10 

 

Table 4 Griewank Function 

Methods/Parameters 
Execution Time 

(s) 

Mean ± Std Dev 

of Fitness 
Iterations 

PSO 20.0 ± 1.0 0.02 ± 0.002 210 ± 18 

GA 23.0 ± 1.2 0.04 ± 0.002 230 ± 20 

ABC 21.5 ± 1.1 0.03 ± 0.0015 220 ± 18 

WOA 19.0 ± 0.9 0.025 ± 0.001 200 ± 15 

Zebra optimization 19.8 ± 1.0 0.022 ± 0.0012 205 ± 16 

Improved Zebra optimization 17.0 ± 0.8 0.015 ± 0.0008 180 ± 12 

 

Table 5 Rosenbrock Function 

Methods/Parameters Execution Time (s) 
Mean ± Std 

Dev of Fitness 
Iterations 

PSO 25.0 ± 1.2 0.01 ± 0.0008 250 ± 20 

GA 30.5 ± 1.5 0.03 ± 0.002 300 ± 25 

ABC 28.0 ± 1.3 0.015 ± 0.001 270 ± 22 

WOA 26.0 ± 1.2 0.012 ± 0.0009 260 ± 20 

Zebra optimization 27.0 ± 1.3 0.011 ± 0.0008 265 ± 22 

Improved Zebra optimization 22.5 ± 1.0 0.005 ± 0.0005 220 ± 15 
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Table 6 Schwefel Function 

Methods/Parameters Execution Time (s) 
Mean ± Std 

Dev of Fitness 
Iterations 

PSO 35.0 ± 1.8 -1.0 ± 0.1 360 ± 28 

GA 40.0 ± 2.0 -0.8 ± 0.15 400 ± 30 

ABC 38.0 ± 1.9 -0.9 ± 0.12 380 ± 28 

WOA 36.5 ± 1.8 -0.95 ± 0.1 370 ± 27 

Zebra optimization 37.2 ± 1.9 -0.92 ± 0.1 375 ± 28 

Improved Zebra optimization 32.0 ± 1.6 -1.3 ± 0.08 340 ± 24 

 

 
Figure 1 convergence plot of Ackley function                                   

Figure 2 convergence plot of Rastrigin function 

 

 

  

 
Figure 3 convergence plot of Griewank Function 

Figure 4 convergence plot Rosenbrok Function 
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Figure 5 convergence plot of Schwefel function 

 

 
 

Figure 6 convergence plot of Sphere Function 

 

  

 

 

Figure 7.Convergence plots (a) Ackley function (b) Rastrigin Function(c) Griewank Function (d) Rosenbrock Function                           

(e) Schwefel function(f)  Sphere Function 

In figure 11 the convergence plots of each objective function with several optimization techniques under consideration 

are depicted however the proposed Improved Zebra optimization algorithm out performs the rest with its fast 

convergence and accuracy. 

This is the form the above experiment it is suggested that improved puffer algorithm is suitable to perform optimization 

of control strategies that can be applied to complex mechanism such as underwater autonomous vehicle dynamics. 

In this work a fractional order PID controller is utilized to control the position and velocity of the AUV and the FOPID 

parameters are tuned using IPOA the dynamics of the AUV is compared with conventional ZOA and it is observed that 

ZOA outperforms ZOA in terms of overshout , sampling time, and settling time 

 

Table 8 Tuned parameters of FOPID 

Method/Parameter P I D λ µ 

PF 0.03 0.0004 0.5 0.2 0.4 

ZOA 0.17 0.03 1.71 0.1 0.3 

 PSO -0.04 -0.0004 -0.93 0.3 0.5 

GA 0.002 0.02 0.06 0.6 0.2 

ABC 0.01 -0.001 0.8 0.4 0.1 

WOA 0.04 -0.42 -0.1 0.7 0.5 

 

The simulation of AUV is carried out in three cases such as 1. Position control case, 2. Velocity control Case, 3. Control 

with noise case 

  

http://www.veterinaria.org/
http://www.veterinaria.org/


REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504  

Vol 25, No. 1 (2024)  

http://www.veterinaria.org  

Article Received:  Revised: Accepted: 

 

3704 

Position Control 
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The position control simulation depicts the AUV's ability to maintain or achieve a specific location in a 3D underwater 

space. The plot shows smooth and precise trajectory tracking, characterized by minimal overshoot and rapid 

convergence to the target point, demonstrating the robustness of the FOPID controller. 

 

Velocity Control 
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The velocity control simulation focuses on regulating the AUV's speed while considering its nonlinear hydrodynamics. 

The graph illustrates a stable velocity profile with quick adaptation to setpoint changes, reflecting the controller's 

effectiveness in mitigating external disturbances and ensuring consistent motion. 

 

Position Control with Noise 
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This simulation introduces external noise to test the controller's robustness in maintaining position accuracy. The plot 

highlights minor fluctuations around the set trajectory due to noise but shows the system's resilience, as the AUV 

quickly compensates for disturbances and converges to the desired position, ensuring reliability in noisy environments. 
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7 Conclusion 

The study successfully addressed the critical challenges in AUV control by developing a robust control strategy 

combining a Fractional Order PID controller with the Improved Pufferfish Optimization Algorithm. The integration of 

IZOA demonstrated significant improvements in convergence rate, computational efficiency, and control precision 

compared to conventional optimization algorithms. Simulation results validated the effectiveness of the proposed 

approach in enhancing the performance of AUVs, particularly in trajectory tracking and stability under non-linear 

dynamics and external disturbances. This research underscores the potential of IZOA in solving complex optimization 

problems and optimizing control strategies for underwater vehicles. Future work could explore real-time implementation 

and adaptation to broader operational conditions, further advancing AUV capabilities in marine applications. 
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