http://www.veterinaria.org

Article Received: July 2024; Revised: August 2024; Accepted: September 2024

A Bibliometric Review of a Study on Building Information Modelling (BIM)

Namira M Saiyad1*, Vandana Pandya2, Dr. Khushbu Bhatt3, Ankit Goad4

- ^{1*}Assistant Professor, Faculty of Civil Engineering, Parul Institute of Engineering and Technology, (Diploma studies), Parul University, Vadodara, Gujarat, ¹saiyednamira30@gmail.com
- ²Head of Department, Faculty of Civil Engineering, Parul Institute of Engineering and Technology, (Diploma studies), Parul University, Vadodara, Gujarat, ²vandanapp14@gmail.com
- ³Assistant Professor, Faculty of Civil Engineering, Parul Institute of Engineering and Technology, Parul University, Vadodara, Gujarat, ³drkbhatt2211@gmail.com
- ⁴Assistant Professor, Faculty of Civil Engineering, Parul Institute of Engineering and Technology, (Diploma studies), Parul University, Vadodara, Gujarat, ⁴ankit.goad23741@paruluniversity.ac.in

Abstract

A prevailing technology in construction is called Building Information Modelling (BIM). This paper focuses on the current study of BIM and to give an overview of the BIM. In this review 8658 papers were published in Scopus index between the years of 2000-2022 were analysed for this article. This study employs methodical approach and makes use of bibliometric methods to better methodically categories. The relationship between the primary building information modelling is depicted in the co-citation and keyword co-occurrence maps. This study widely mentioned research papers, authors, keywords, organisations, and nations that have produced work in the area of BIM.

Keywords: Bibliometric Review, Building information modelling, VoSViewer, Scopus Database, Systematic Literature review, Network analysis.

1 Introduction

Building Information modelling (BIM) is advanced and widely adopted in collaborationist construction projects with multiple different parties providing facility and software applications. In recent years, BIM has enhanced one of the best and faster fastest-growing multidisciplinary data sharing in Architecture, Engineering, and Construction firms. Its success is largely attributable to a new design methodology that enables tracking of the project's entire life cycle, including additional information, which is very helpful to see every aspect in detail, including the schedule, the financial management, the calculations, and the simulations. (oktem, Etrgen & et al 2018)

In comparison to 3D design CAD, the BIM is a model in which every entity has a specific role and information regarding the project. It also represents space in three dimensions. An architect's BIM model can be swiftly and readily transformed into an analytical model that a builder can utilize for structural analysis. A structural engineer can determine the stresses or deflections in a few easy steps then go on to thoroughly check the code requirements and do the cost estimation with easy steps. (Buet, Pathan & et al 2018)

BIM software is a tool for virtual reality and describes objects parametrically. When there are intricate calculations or a lot of repetitive tasks to be completed to obtain the most accurate estimations, applying BIM is quite advantageous. One of the untapped potential uses of BIM is that it can significantly reduce the time and effort required for cost estimation, allowing workers to focus on more beneficial tasks rather than manually counting the number of objects, such as value engineering, interference checking, constructability reviews, etc. (Sarkar, Modi & et al 2015)

BIM SOFTWARES (Bhirud & Patil 2016):

Numerous software programs exist for building information modelling Examples of software used for architectural and engineering purposes include Autodesk Revit Advance, Graphisoft ArchiCAD, Bentley Architecture, Nemetschek Allplan Architecture, Gehry Technologies- Digital Project Designer, Nemetschek Vectorworks Architect, MSA IDEA Architectural Design (IntelliCAD), CADSoft Envisioneer, Softtech Spirit, and Rhino BIM (Beta). (Bhirud & Patil 2016) Additionally, the structural design software Autodesk Revit Structure, Bentley Structural Modeler, STAAD and Prosteel, Tekla Structures, CypeCAD, Bentley RAM, and Nemetschek Scia for structural purposes Autodesk Revit MEP (mechanical, electrical, engineers (electrical and plumbing) (Bhirud & Patil 2016)

http://www.veterinaria.org

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

Different kinds of BIM dimensions are as follows: (Mahadevi 2018)

Fig No.1: Features of BIM

(Compile by Author)

BIM Across the globe: (Dodge data & analytics)

Major business and public owners that seek to institutionalise BIM's advantages of quicker, more assured project delivery as well as more reliable quality and cost have sped up its adoption. Government mandates for BIM in the US, the UK, and other countries show how smart owners can set clear objectives and give design and construction firms the freedom to use BIM technology to achieve and surpass those targets while also advancing BIM throughout the larger project ecosystem. BIM usage as a result increased dramatically in North America from 28% to 71% between 2007 and 2012, and similar explosive growth is anticipated in the UK and other regions. In North America, adoption of contractors (74%) has surpassed that of architects (70%) and this group is increasingly taking the lead in advancing BIM innovation, metrics, and value. (Dodge data & analytics)

Return on investment (ROI) for BIM: (Dodge data & analytics)

The majority of Firms estimate their ROI on their BIM investments to be between 10% and 25%, despite the lack of a common metric for calculating BIM ROI (unlike more common measurements for project ROI). The results show that each region has a distinct set of indicators that are valued highly and various variables that construction businesses believe would increase their return of all the regions, contractors in Japan, Germany, and France report the highest returns on their BIM investments, with South Korea, the UK, and the US trailing behind. (Dodge data & analytics)

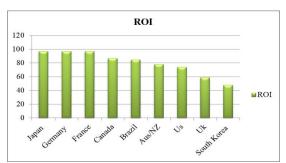


Fig No.2: Contractors Reporting a Positive Return on Investment (ROI) for BIM (By Country)

(Source: Compile from Dodge data and analytics, 2013 by Author)

Metrics relating to the project delivery process, such as fewer RFI's, fewer unexpected changes, improved customer satisfaction, and less interruption in the project process, are widely regarded as the second most important category for determining ROI on BIM investments after financial metrics. Recognizing the collaborative nature of BIM projects, 60% of contractors across all regions stated that they thought that future BIM visualisation improvements would likely have the greatest positive influence on their BIM ROI. (Dodge data & analytics)

Furthermore, the research is organised as follows: Section 2 delves into bibliometric analysis, which includes, among other things, yearly publishing trends, author trends, journal statistics, geographical analysis, and handshakes between publications and citations. Section 3 provides a concluding overview. The final section of the paper represents the scope of future work/future research directions.

Research Methodology: -

The Scopus database was used for this bibliometric investigation. Building information modelling, "building information modelling vs. traditional," and numerous other terms related to the berries and benefits of building information modelling have all been used by the author to retrieve the database. Out of the more than 9000 document details in that database, 8658 usable documents were found after the bifurcation. Following the bifurcation, additional

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

data analysis was done utilising the co-author, co-citation, co-occurrence, and co-documentation approaches using the tools VoSviewer, Origin Pro, and Lucid Chart.

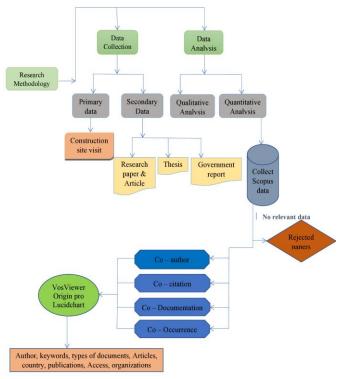


Fig No .3: Research stages

Finding from Bibliometric Analysis: -

8658 documents or publications in total during the year of 2000 to 2022 were analysed for this bibliometric analysis. They are evaluated in light of their many traits, which are noted and identified in accordance with the use of a spread sheet created for their future investigation. Building information modelling and many other terms linked to it were used to find a preliminary sample of more than 9000 Scopus documents. After combining the samples from each keyword, eliminating duplicate articles, and applying the other suggested exclusion criteria, the author discovered 8658 documents that were thought to be pertinent to this study.

1.Document Type

The Scopus database contains 38% articles, 16% conference papers, 6% reviews, 2% book chapters, and 37% other items. Which are displayed in Figure 4 and Table No. 1 The author came to the conclusion that 91% of the Scopus database's traffic comes from articles, conference papers, and other sources, and that most researchers choose these sources over blogs and other online publications for their research.

Table No. 1: Documents types published in Scopus from database

Serial No.	Document Types	Number of Documents
1.	Article	5238
2.	Note	0
3.	Short Survey	2
4.	Book	91
5.	Book Chapter	252
6.	Conference Review	32
7.	Review	881
8.	Conference Paper	2169
9.	Retreated	1
10.	Other	5016

http://www.veterinaria.org

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

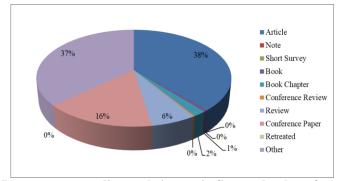


Fig No. 4: Documents according to their type in Scopus database form 2000-2022

2.Yearly number of research papers published (2003 - 2022)

In Table 2 and Figure No. 5 for the Scopus databases, respectively, the yearly publication trend in the bibliometric survey on clustering is displayed for the past 20 years. The year 2021 and 2022 saw the most publications in the current research study, and it has been discovered that publication patterns differ in kind.

Table No. 2: The number of a document published annually during 2003-2022

Serial No.	Year	No. of Documents	Serial No.	Year	No. of Document
1.	2003	1	12.	2014	223
2.	2004	1	13.	2015	248
3.	2005	3	14.	2016	353
4.	2006	3	15.	2017	455
5.	2007	15	16.	2018	725
6.	2008	11	17.	2019	976
7.	2009	35	18.	2020	1414
8.	2010	37	19.	2021	1874
9.	2011	82	20.	2022	1963
10.	2012	96	Total		9440
11.	2013	145	Total		8660

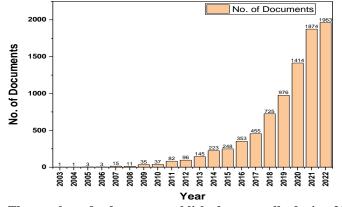


Fig No. 5: The number of a document published annually during 2003-2022.

3. Authors' Research trend

The top 10 authors who contributed to the bibliometric study are shown in the clustering from Scopus along with their connections. Table 3 clearly identifies the key contributors to the study as being The citation analysis revealed that the Wang X, Teizer J, Wang J and cheng J.C.P which are frequently cited by researchers worldwide, have 4120, 2079, 2077 and 2008, This was further underlined by the Research Tool (VoSViewer) for Network analysis and author co-occurrence map.

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

Table No. 3: A table showing the top 10 authors of Green Building studies in the clustering domain published in

Scopus.		
Serial No.	Author	Citation
1.	Wang X	4120
2.	Teizer J.	2079
3.	Wang J.	2077
4.	Cheng J.C.P.	2008
5.	Golparvar-fard M.	1595
6.	Li h.	1568
7.	Sacks R.	1561
8.	Wu P.	1430
9.	Edwards D. J.	1374
10.	Li X.	1370

In the Building information modelling research, the most often referenced author is displayed via hierarchy map in Figure 6. Because they are simple to understand and because their size, colour, and other percentage attributes shows the maximum research citation done by those authors.

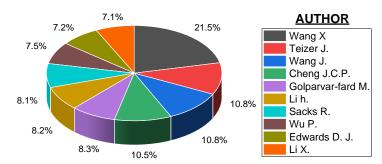


Fig No. 6: A Sunburst hierarchy map of top 10 authors of building information modelling

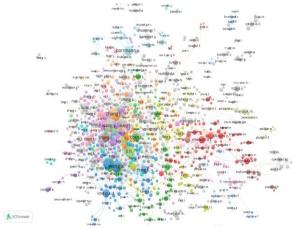


Fig No. 7: Bibliometric map of Author co-repletion

4. Geographical Region Analysis

Using data from Scopus, countries containing documents in the topic of "Building information modelling research" are clustered in Figures 8 and 9. The country's bibliometric map is displayed in the research tool (VoSViewer). The map with the nodes and links illustrates the relationships between the various countries. China and the United States have contributed the most documents to the building information modelling study, 1212 and 1026, respectively. United States tops the list in terms of citations with 24338, followed by the United Kingdom with 18557.

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

Table No. 4: countries currently involved in the building information modelling Study.

rial No.	Country	Documents	Serial No.	Country	Citation
1.	China	1212	1.	United State	24338
2.	United State	1026	2.	United Kingdom	18557
3.	United Kingdom	862	3.	Australia	17956
4.	Australia	766	4.	China	17384
5.	Hong Kong	343	5.	Hong Kong	9696
6.	Germany	341	6.	Germany	8066
7.	Canada	339	7.	South Korea	7460
8.	South Korea	307	8.	Canada	5757
9.	Malaysia	293	9.	Italy	4214
10.	Spain	267	10.	Singapore	3035

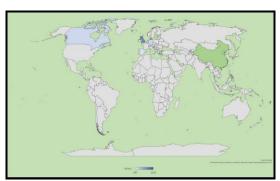


Fig No. 8: world map showing the countries involved in building information modelling studies by Documents

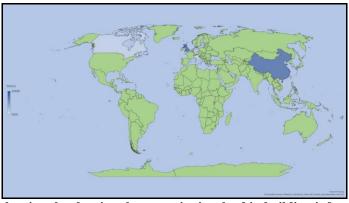


Fig No. 9: A world map showing the showing the countries involved in building information modelling studies Citation

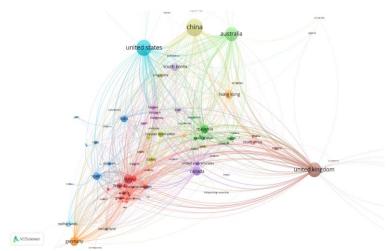


Fig No. 10: Bibliometric map of Country Co-Relation

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

5. Organization Trend

This section looks at the number of building information modelling related publications that have been released by various organisations. The company's bibliometric map was created using the Research Tool (VoSViewer). On the map, the connections between the organisations are clearly visible. With the support of links and nodes, this map also depicts the organisational relationships. The school of built environment documents are primarily cited by the researcher. The school of built environment and Building received 1275 citations.

Table No. 5: A table showing the organization involved in building information modelling studies.

Serial No.	Organization	Citation
1.	School of built environment	1275
2.	School of architecture and built environment	1202
3.	Institute for industrial production	769
4.	Department of housing and interior design	641
5.	Department of construction management	632
6.	Department of computer science	624
7.	Department of civil and environmental engineering	599
8.	Department of building and real estate	587
9.	Department of building and real estate hong kong	566
10.	Deakin university	560

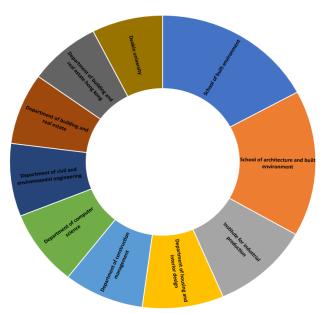


Fig No. 11: A sunburst hierarchy showing the organizations involved in building information modelling studies

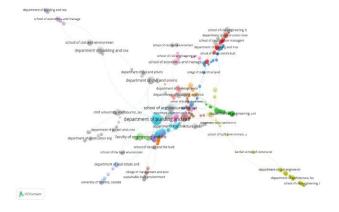


Fig No. 12: Bibliometric map of Organization Co-Relation

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

6.Publication Analysis

This section looks at the number of clustering-related publications that publish the most papers on building information modelling and how many papers building information modelling are linked to those publications. The top 10 publications are listed below the list. Springer has published the most documents (1721) pertaining to the building information modelling, as shown in Table 6.

Table No. 6: Number of Documents published by Publication

Serial No.	Publication	Documents
1.	Springer	1721
2.	MDPI	1070
3.	Institute of Physics Publishing	785
4.	Himdwai Limited	668
5.	Institute of Electrical & Electronics Engineering	595
6.	Taylor and Francis	331
7.	Emerlamd	232
8.	Elsevier	144
9.	CRC Press	132
10.	ASCE	117

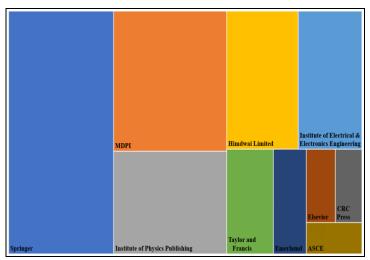


Fig No. 13: Tree map hierarchy for publication who publish most Documents on building information modelling

7. Open Access

Open-access journals offer a diverse range of types and accommodate different publishing methods. The document has a total of six different open-access types and 33 document not mentioned in Access. In the Scopus database from 2000 to 2022, there are All Open Access Gold Open Access, Hybrid Open Access, Diamond/Platinum Open Access, Bronze Open Access, and Green Open Access papers. In All open-access Categories, the maximum number of documents (3451) is available.

Table No. 7: Different open access types Document published in Scopus database.

Serial No.	Types of Access	Documents
1.	All Open Access	3451
2.	Green Open Access	2084
3.	Bronze Open Access	2293
4.	Gold Open Access	463
5.	Hybrid Open Access	342
6.	Dimond Open Access	0
7.	Platinum Open Access	0
8.	Total	8633
9.	Not Mentioned	33

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

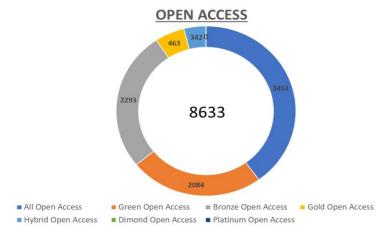


Fig No. 14: Different open access types Document published in Scopus database

8.Key Words

The top 10 keywords for building information modelling are shown in the table below. The keywords were most frequently used. Architectural design, construction industry, and information theory are examples of related words. Below is a network map of keyword co-citations that we made using VosViewer. The size of the node shows how frequently a keyword occurs.

The most used keywords for building information modelling are listed in Table 8. Architectural Design (28466), construction industry (16210), and information theory (12024) are the top three most frequently used keywords in table no 8.

Table 8: Top 10 keywords on building information modelling

Serial No.	Key Words	Link Strength
1.	Architectural Design	28466
2.	Construction Industry	16210
3.	Information Theory	12024
4.	Building Information Modelling	11642
5.	Project Management	11193
6.	Building Information Modelling – BIM	10946
7.	Construction	9020
8.	Life Cycle	8491
9.	BIM	8346
10.	Information Management	7702

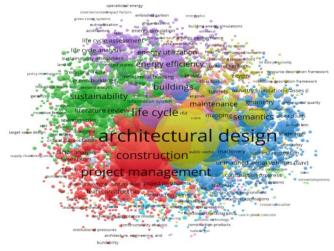


Fig No. 15: Keyword co-occurrence network map

http://www.veterinaria.org

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

Fig No. 16: A Word cloud showing the top keywords for building information modelling studies

Conclusion: -

Based on the analytic approach, the outcome of this bibliometric analysis of the Building information modelling is categorized into four major categories: co-citation, co-occurrence, co-author, and co-documentation. According to research the top 5 keywords co-occurrence shows "Architectural Design" (28466), "construction industry" (16210), and "information theory" (12024), "Building information modelling" (11642), "Project management" (111963) which are frequently used in the documents and The top four most referenced authors Wang X, Teizer J, Wang J and cheng J.C.P, Country China, United States and united kingdom, and organization School of built environment are displayed in the co-citation and co-author. Co-documentation displays the most frequently published document (an article), the most documents published in a year of 2021 and 2022, the most documents published by a publisher springer, and the most documents published by country china, United States and United Kingdom.

Future Directions: -

For future research, it is recommended that the research be expanded to databases such Web of Science, Springer, Science of Direct, and Google Scholar. A bibliometric study may be carried out by the researcher utilising a variety of analytical techniques, such as text mining, cowording, bibliography, coupling, and many more. Also included are additional Software like Bidexcle, Netdraw, Cite Space, Scimetrix and SciMAT etc.

Reference: -

Bibliography:

- 1. Mukherjee, D., Lim, W.M., Kumar, S. and Donthu, N., 2022. Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, pp.101-115.
- 2. Hire, S., Sandbhor, S. and Ruikar, K., 2022. Bibliometric survey for adoption of building information modeling (BIM) in construction industry—a safety perspective. Archives of computational methods in engineering, 29(1), pp.679-693.
- 3. Zhao, Y. and Taib, N., 2022. Cloud-based Building Information Modelling (Cloud-BIM): Systematic literature review and Bibliometric-qualitative Analysis. Automation in Construction, 142, p.104468.
- 4. Liu, Z., Li, P., Wang, F., Osmani, M. and Demian, P., 2022. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. International Journal of Environmental Research and Public Health, 19(19), p.12820.
- 5. Gao, C., Wang, J., Dong, S., Liu, Z., Cui, Z., Ma, N. and Zhao, X., 2022. Application of Digital Twins and Building Information Modeling in the Digitization of Transportation: A Bibliometric Review. Applied Sciences, 12(21), p.11203.
- 6. Liu, Z., Li, P., Wang, F., Osmani, M. and Demian, P., 2022. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. International Journal of Environmental Research and Public Health, 19(19), p.12820.
- 7. Khudhair, A., Li, H., Ren, G. and Liu, S., 2021. Towards future BIM technology innovations: a bibliometric analysis of the literature. Applied Sciences, 11(3), p.1232.
- 8. Babalola, A., Musa, S., Akinlolu, M.T. and Haupt, T.C., 2021. A bibliometric review of advances in building information modeling (BIM) research. Journal of Engineering, Design and Technology.
- Shkundalov, D. and Vilutienė, T., 2021. Bibliometric analysis of building information modeling, geographic information systems and web environment integration. Automation in Construction, 128, p.103757.
- 10. Ding, Z., Zheng, K. and Tan, Y., 2021. BIM research vs BIM practice: a bibliometric-qualitative analysis from China. Engineering, Construction and Architectural Management.

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 25, No. 2 (2024)

http://www.veterinaria.org

Article Received: July 2022; Revised: August 2022; Accepted: September 2022

- 11. Wen, Q.J., Ren, Z.J., Lu, H. and Wu, J.F., 2021. The progress and trend of BIM research: A bibliometrics-based visualization analysis. Automation in Construction, 124, p.103558
- 12. Baarimah, A.O., Alaloul, W.S., Liew, M.S., Kartika, W., Al-Sharafi, M.A., Musarat, M.A., Alawag, A.M. and Qureshi, A.H., 2021. A bibliometric analysis and review of building information modelling for post-disaster reconstruction. Sustainability, 14(1), p.393.
- 13. Manzoor, B., Othman, I. and Pomares, J.C., 2021. Digital technologies in the architecture, engineering and construction (Aec) industry—A bibliometric—Qualitative literature review of research activities. International journal of environmental research and public health, 18(11), p.6135.
- 14. Mulay, P., Joshi, R.R. and Chaudhari, A., 2020. Bibliometric Study of Bibliometric Papers about Clustering. Library Philosophy and Practice, pp.1-21.
- 15. Ahmad, P., Asif, J.A., Alam, M.K. and Slots, J., 2020. A bibliometric analysis of Periodontology 2000. Periodontology 2000, 82(1), pp.286-297.
- 16. Mulay, P., Joshi, R. and Chaudhari, A., 2020. Distributed incremental clustering algorithms: a bibliometric and word-cloud review analysis. Science & Technology Libraries, 39(3), pp.289-306.
- 17. Danvila-del-Valle, I., Estévez-Mendoza, C. and Lara, F.J., 2019. Human resources training: A bibliometric analysis. Journal of Business Research, 101, pp.627-636.
- 18. Zhao, X., Zuo, J., Wu, G. and Huang, C., 2019. A bibliometric review of green building research 2000–2016. Architectural Science Review, 62(1), pp.74-88.
- 19. Luiz, O.R., de Souza, F.B., Luiz, J.V.R. and Jugend, D., 2018. Linking the critical chain project management literature. International journal of managing projects in business.
- 20. Saniye oktem, Esin Etrgen, Aslin Akcamete "BIM Implementation in Infrastructure Projects: Benefits and Challenges" 5 th International Project and Construction Management Conference (IPCMC2018), Reserch gate, ELSEVIER
- 21. R. S. Bute, Md. G. Pathan, R. H. Mohankar, M. D. Pidurkar, DESIGN A DETAIL 3D MODEL OF A BUILDING WITH COMPARISON OF MANUAL AND SOFTWARE ESTIMATE ON AUTODESK REVIT, IJARIIE-ISSN(O)-2395-4396, Vol-4 Issue-3 2018
- 22. Mir-Babayev, R., Gulaliyev, M., Shikhaliyeva, S., Azizova, R. and Ok, N., 2017. The impact of cultural diversity on innovation performance: Evidence from construction industry of Azerbaijan. Economics & Sociology, 10(1), p.78
- 23. Prof. Abhijit .N. Bhirud, Pravin B. Patil "APPLICATION OF BUILDING INFORMATION MODELING FOR THE RESIDENTIAL BUILDING PROJECT", International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 349-352
- 24. Zupic, I. and Čater, T., 2015. Bibliometric methods in management and organization. Organizational research methods, 18(3), pp.429-472.
- 25. Gómez, C.C.O., Ocampo, F.A.F., López, C.C.A. and García, J.E.G., Building Information Modeling from a bibliometric analysis Modelado de Información de Construcción desde un análisis bibliométrico.
- 26. Debasis Sarkar1& Raj Modi, "Applications of Building Information Modeling (BIM) to Real Estate Projects of Ahmedabad", International Advanced Research Journal in Science, Engineering and Technology Vol. 2, Issue 9, September 2015
- 27. Mishra, D.K., Gawde, M. and Solanki, M.S., 2014. Bibliometric study of PhD thesis in English. Global Journal of Academic Librarianship, 1(1), pp.19-36.
- 28. Zupic, I. and Cater, T., 2013. Bibliometric methods in management and organization: A review. In Academy of Management Proceedings (Vol. 2013, No. 1, p. 13426). Briarcliff Manor, NY 10510: Academy of Management.

Webliography:

- 1. Dodge data
- 2. Scopus https://www.scopus.com/home.uri