

Finger Vein Recognition System Work Process

Atul Panchal^{1*}, Aafrin Manknojiya², Jeel Bhatt³, Vivek Dave⁴, Yash Goyani⁵, Finny Sam, Kunal Surve⁶

¹M.Sc.-IT Student, Parul Institute of Engineering and Technology (PIET), Parul University

²M.Sc.-IT Student, Parul Institute of Engineering and Technology (PIET), Parul University

³MCA Student, Parul Institute of Engineering and Technology – Master of Computer Applications (PIET-MCA) Parul University

⁴Assistant Professor, Parul Institute of Engineering and Technology – Master of Computer Applications (PIET-MCA) Parul University

^{5,6}Parul Institute of Engineering & Technology Parul University, Gujarat, India
2205102110006@paruluniversity.ac.in, 2205112110130@paruluniversity.ac.in

***Corresponding Author:** Atul Panchal

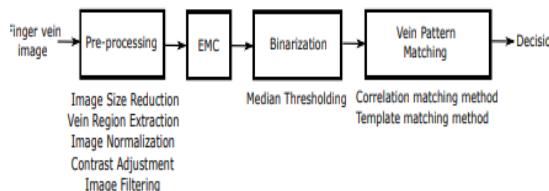
***(M.Sc.-IT Student, Parul Institute of Engineering and Technology (PIET), Parul University) Email ID: -**
atulpanchal0215@gmail.com

Abstract. Finger vein identification is a biometric authentication method that shows great promise because of its distinct features, which include high accuracy, resilience, and non-invasiveness. This study offers a thorough analysis of the developments, approaches, and difficulties in the field of finger vein identification. An introduction of the fundamental ideas behind finger vein identification is given at the outset, along with information on the structure of finger veins and the imaging methods used to record vein patterns. It then goes into the many methods and algorithms used in finger vein identification systems for matching, classifying, and extracting features. The report also discusses new developments in finger vein identification technologies, including multimodal biometric systems that combine finger veins with other biometric modalities and deep learning-based techniques. The main difficulties that finger vein identification systems encounter are also covered in this work, including differences within the same class, environmental influences, and security issues. It also looks at possible uses for finger vein recognition in a variety of industries, including banking, healthcare, and access control. The study ends with some suggestions for future research and possible ways to get around some of the current problems to speed up the creation of more durable and trustworthy finger vein detection devices.

Keywords: fingerprint vein pattern, biometric identification

1. Introduction

Biometric identification has been more and more common in recent years, especially because fingerprint sensors are now widely integrated into mobile devices. But as technology develops, so does the demand for identifying techniques that are more trustworthy and secure. Comparing finger vein recognition to conventional fingerprint recognition systems, finger vein recognition has become a more accurate and secure biometric authentication method. The vein patterns in the finger are internal and so more resistant to change than fingerprints, which are susceptible to wear and external influences. The process of finger vein detection involves shining a near-infrared LED light on the finger, which the veins absorb and become darker as a result. The distinctive vein pattern is then captured by a camera and can be utilized for authentication.


Comparing this technology to fingerprint identification, there are significant advantages. First of all, it is more convenient and hygienic since it is non-invasive and does not require direct contact with a sensor. Furthermore, since vein patterns are internal, they cannot be replicated or faked, adding degree of protection. Furthermore, even in different lighting situations, vein patterns may be properly caught thanks to the utilization. The incorporation of finger vein recognition technologies into mobile devices presents a significant opportunity to improve security and authenticate users. Strong authentication procedures are essential to protecting sensitive data and avoiding unwanted access as more and more tasks, like mobile banking, e-commerce, and access control, depend on smartphones[5].

The accuracy, stability, and high level of security associated with finger vein identification have made it more popular in recent years [1]. Finger vein recognition has the characteristics of uniqueness, vivo-detection, and forgery difficulty, making it of high user-acceptability when compared to traditional biometric recognition technologies, such as face, iris, fingerprint, and palm print recognition. These characteristics can be used in access control systems to replace those that are currently based on electronic key or face recognition in the banking, electric power, and security fields [2].

The accuracy, stability, and high level of security associated with finger vein identification have made it more popular in recent years. Finger vein recognition has the characteristics of uniqueness, vivo-detection, and forgery difficulty, making it of high user-acceptability when compared to traditional biometric recognition technologies, such as face, iris, fingerprint, and palm print recognition. These characteristics can be used in access control systems to replace those that are currently based on electronic key or face recognition in the banking, electric power, and security fields [8].

2. Work Process

There are four steps in the suggested system: 1) the infrared picture is pre-processed 2) the vein pattern is retrieved using the EMC approach; 3) the vein pattern is binarized; and 4) the extracted vein pattern is compared to the vein [14].

Figure1 Diagram of Process

A. Image Processing

Pre-processing infrared pictures is essential for accurately analyzing and identifying vein patterns in finger vein recognition since it sets up the acquired data for such analysis. The first phase in this multi-step procedure is to reduce noise from the sensor by using techniques like median or Gaussian filtering. This will help to minimize the effect of ambient light interference and provide better pictures for analysis. Then, to standardize vein pattern visibility across different lighting situations and skin tones and increase their individuality, contrast enhancement techniques such as histogram equalization or adaptive histogram equalization are performed.

To ensure uniformity in vein pattern depiction, normalization algorithms are also applied to account for changes in camera distances and finger positions. The venous area is then separated from the backdrop using segmentation algorithms, which successfully collect the pertinent characteristics for study while removing superfluous data. By removing the vein patterns' central axis or major structure, skeletonization further streamlines the vein patterns while maintaining critical information integrity and minimizing computing complexity. Lastly, discriminative features are extracted from the pre-processed pictures using feature extraction techniques including Gabor filters, wavelet transformations, and local binary patterns (LBP). This allows for precise authentication and recognition. The thorough implementation of these pre-processing stages optimizes infrared pictures to augment the efficacy and dependability of finger vein identification systems, hence augmenting their extensive integration in diverse security and authentication domains [14].

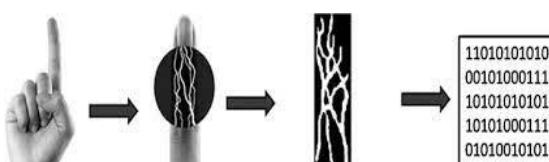

B. Vein Pattern Extraction

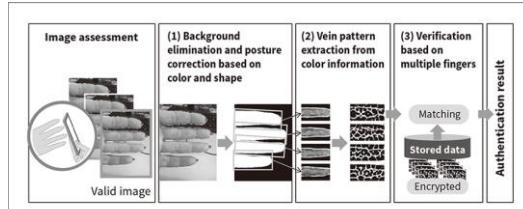
Image scaling plays a critical role in enhancing the data for efficient processing in the identification of finger veins while maintaining the integrity of the vein patterns required for accurate identification. This method involves lowering the size of the original image while maintaining visual quality, commonly by using interpolation techniques. Picture reduction maximizes computational resources, allowing for faster techniques for recognition and analysis. Resizing preserves the integrity and recognizability of the vein patterns while using less memory and computing power. The overall performance and reliability of finger vein identification systems are enhanced by this streamlined approach, increasing their value in a variety of security and authentication applications [4].

C. Pattern Use

One of the most important steps in identifying a finger vein is to divide the vein pattern. This allows for the examination and comparison of smaller, easier-to-manage segments of the vein pattern, which increases efficiency and accuracy. In this division procedure, the vein pattern is divided into smaller segments or areas according to predetermined standards, including vein density, vein curvature, or local characteristics. Different segmentation methods, such as edge detection, clustering, or thresholding, can be used to identify different areas within the vein pattern. After splitting, each segment is processed independently, going through pre-processing, feature extraction, and comparison with databases or reference templates. Dividing the vein pattern makes it possible to analyze certain local features in a targeted manner, which improves the system's capacity to identify minute variations and patterns within the vein structure.

Furthermore, it lessens the effect of fluctuations in finger location or image quality, enabling more robust verification. In general, segmenting the vein pattern improves finger vein identification systems' efficiency and dependability for a range of security and authentication uses [10].

Figure 2 Pattern Convert into Data


The process of converting vein patterns into binary data entails encoding each vein pattern's unique characteristics into a binary code for effective storage and comparison in finger vein identification systems. The infrared pictures are first pre-processed to improve quality and identify the vein region. Then, features are extracted to capture the texture, form, and spatial distribution of the images. The characteristics that were extracted are then converted into binary values, where each feature is represented by a series of bits that indicate whether it exists or not. The vein pattern data is condensed into a small format with this binary representation, making it easy to compare and authenticate. Lastly, a database or template is used to store the binary-encoded vein pattern data, allowing for a smooth comparison against freshly taken finger vein photos for safe and trustworthy biometric identification [2].

D. Methods

Numerous techniques are used in finger vein recognition to match vein patterns, each having a distinct approach to verifying an individual's identity based on their vein patterns. Using a simple comparison method, template matching finds the closest match between the extracted vein pattern and previously stored templates in the database based on similarity scores. Local binary patterns (LBP) and Gabor filters are examples of distinguishing characteristics that are extracted by feature-based matching. These features capture texture and spatial distribution and are compared using metrics such as cosine similarity or Euclidean distance. Through the use of algorithms such as support vector machines (SVM), k-nearest neighbors (KNN), or convolutional neural networks (CNNs), machine learning-based techniques can directly identify patterns from vein images. This allows for the classification or ranking of similarities with stored templates, which ultimately improves recognition accuracy [4].

Fusion methods combine many matching strategies, mixing machine learning models with conventional algorithms or combining template matching with feature-based techniques to maximize their respective strengths. These fusion procedures improve overall accuracy and minimize flaws by optimizing recognition performance. Depending on the size of the database, the available processing power, and the required degree of precision, a particular matching technique is selected to provide reliable and strong authentication in a variety of security and access control scenarios [4], [14], [1].

3. Explanation by Image Blocks

Figure 3 Work Process of Finger Vein Recognition

A rigorous four-step procedure is followed by finger vein recognition, a sophisticated biometric identification approach, to reliably identify people based on their distinctive vein patterns. The first stage is accurate image acquisition, where an infrared picture of the finger is taken by making use of veins' natural infrared light absorption. The analysis that follows is based on this photograph. To isolate and improve the visibility of the vein patterns within the acquired image, the second step—vein pattern extraction—is essential. Advanced pre-processing methods like as segmentation, contrast enhancement, and noise reduction remove unnecessary background information and guarantee vein pattern clarity [12]. After vein patterns are extracted, the procedure moves on to feature extraction, where unique features of the vein patterns are found and decoded for further examination. The vein structure's texture, shape, and spatial distribution are captured by these characteristics, which use techniques including wavelet transformations, Gabor filters, and local binary patterns (LBP). To provide a reliable depiction of the vein patterns that aid in precise identification, this step is crucial [7], [3].

The matching and authentication step of finger vein recognition compares the returned attributes to previously saved templates or database entries. Many matching techniques, including feature-based matching, template matching, and machine learning-based procedures, are employed to determine the individual's identity. By comparing the retrieved attributes to previously saved templates, authentication is achieved. For a variety of security and access control applications, this provides a trustworthy and secure biometric authentication solution. Through this laborious four-step procedure, finger vein recognition systems provide accuracy and efficiency in identification verification, hence improving overall security standards [2], [12].

4. Conclusion

Finally, the finely tuned method of vein recognition in the finger represents an advanced combination of vein pattern extraction, feature extraction, picture capture, and matching for authentication. The process starts with the painstaking infrared picture acquisition to reveal the distinct vein patterns. The next steps are to refine and encode these patterns

into a succinct illustration. By utilizing sophisticated pre-processing techniques and feature extraction methods, the system can identify the subtle differences between vein patterns, which ultimately results in a reliable biometric authentication system. Through feature extraction and comparison with database entries or saved templates, the system reliably authenticates individuals, strengthening security protocols across a range of applications. This all-encompassing strategy not only guarantees accuracy and dependability in the process of authentication but also highlights the potential of finger vein identification as a key component of contemporary security systems, offering improved security and user-friendliness. With additional study and development, finger vein recognition has the potential to completely transform biometric identification and provide unmatched security for a wide range of industries.

References

1. Sapkale, Manisha; Rajbhoj, S. M. (2016). [IEEE 2016 Conference on Advances in Signal Processing (CASP) - Pune, India (2016.6.9-2016.6.11)] 2016 Conference on Advances in Signal Processing (CASP) - A finger vein recognition system.306–310. doi:10.1109/CASP.2016.7746185
2. Yunyun, Pan; Yi, Zhuo; Zhiwei, Chen; Zhen, Qiu; Yaobin, Mao (2019). [IEEE 2019 Chinese Control And Decision Conference (CCDC) - Nanchang, China (2019.6.3-2019.6.5)] 2019 Chinese Control And Decision Conference (CCDC) - Finger vein recognition based on Hessian-Affine operator. 5722–5727. doi:10.1109/ccdc.2019.8832770
3. Xiong, Zhangxi; Liu, Mingliang; Guo, Qing (2019). [IEEE 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) - Dalian, China (2019.3.29-2019.3.31)] 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) - Finger Vein Recognition Method Based on Center-Symmetric Local Binary Pattern. , (), 262–266. doi:10.1109/icaica.2019.8873475.
4. Sudhagar, D., Saturi, S., Choudhary, M., Senthilkumaran, P., Howard, E., Yalawar, M. S., & Vidhya, R. G. (2024). Revolutionizing data transmission efficiency in IoT-enabled smart cities: A novel optimization-centric approach. International Research Journal of Multidisciplinary Scope (IRJMS), 5(4), 592-602. <https://doi.org/10.47857/irjms.2024.v05i04.01113>.
5. Chen, Qing; Yang, Lu; Yang, Gongping; Yin, Yilong; Meng, Xianjing (2017). [IEEE ICASSP 2017 - 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - New Orleans, LA, USA (2017.3.5-2017.3.9)] 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - DFVR: Deformable finger vein recognition. , (), 1278–1282. doi:10.1109/ICASSP.2017.7952362
6. D. Akila;S.Jeyalaksshmi;R. Jayakarthik;S. Mathivilasini;G. Suseendran; (2021). Biometric Authentication With Finger Vein Images Based On Quadrature Discriminant Analysis . 2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM), (), -. doi:10.1109/iccakm50778.2021.9357705
7. RaunakBhupal;Kalidindi Lakshmi Sanjana;NikhilKishanKhaneja;PrakharBhartiya;AchaladiSpoorthiBhat;Sandesh B J; (2021). Finger Vein Authentication System . 2021 International Conference on Computer Communication and Informatics (ICCCI), (), -. doi:10.1109/iccci50826.2021.9402594
8. YufanZhang;Zhiping Liu; (2020). Research on Finger Vein Recognition Based on Sub-Convolutional Neural Network . 2020 International Conference on Computer Network, Electronic and Automation (ICCNEA), (), -. doi:10.1109/ICCNEA50255.2020.00051
9. Zhu, Chaoping; Yang, Yongbin; Jang, Yun (2019). [IEEE 2019 14th International Conference on Computer Science & Education (ICCSE) - Toronto, ON, Canada (2019.8.19-2019.8.21)] 2019 14th International Conference on Computer Science & Education (ICCSE) - Research on Denoising of Finger Vein Image Based on Deep Convolutional Neural Network. , (), 374–378. doi:10.1109/ICCSE.2019.8845517
10. Wu, Jiacun; He, Dongzhi (2018). [IEEE 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) - Chongqing (2018.6.27-2018.6.29)] 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) - Finger Vein Recognition Based on Feature Point Distance. , (), 163–167. doi:10.1109/icivc.2018.8492806
11. Guo and Bing qiao ,Research on The Finger Vein Image Capture and Finger Edge Extraction Qingchang Yichang Testing Technology Research Institute Yichang, Hubei Province, China fingervein@126.com &fingervein@126.com
12. Georg Wimmer;BernhardPrommegger;AndreasUhl; (2021). Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins using the CNN Triplet Loss . 2020 25th International Conference on Pattern Recognition (ICPR), (), -. doi:10.1109/icpr48806.2021.9413060
13. Chen, Guanghua; Dai, Qinghua; Tang, Xiao; Xu, Zihao (2018). [IEEE 2018 5th International Conference on Systems and Informatics (ICSAI) - Nanjing, China (2018.11.10-2018.11.12)] 2018 5th International Conference on Systems and Informatics (ICSAI) - An Improved Least Trimmed Square Hausdorff Distance Finger Vein Recognition. , (), 939–943. doi:10.1109/ICSAI.2018.8599439
14. Mei, Xiao; Ma, Hui (2019). [IEEE 2019 International Conference on Information Technology and Computer Application (ITCA) - Guangzhou, China (2019.12.20-2019.12.22)] 2019 International Conference on Information Technology and Computer Application (ITCA) - Finger vein recognition algorithm based on improved weighted sparse representation. , (), 6–8. doi:10.1109/ITCA49981.2019.00009
15. Vasilopoulos, Christos; Skodras, Athanassios (2018). [IEEE 2018 IEEE 13th Image, Video, and Multidimensional

Signal Processing Workshop (IVMSP) - Aristi Village, Zagorochoria, Greece (2018.6.10-2018.6.12)] 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP) - A Novel Finger Vein Recognition System Based on Enhanced Maximum Curvature Points. , (), 1–5. doi:10.1109/ IVMSPW.2018.8448746

16. ZejunZhang;FeiZhong;Wenxiong Kang; (2021). Study on Reflection-Based Imaging Finger Vein Recognition . IEEE Transactions on Information Forensics and Security, (), -. doi:10.1109/tifs.2021.3093791
17. Yang, Xiaofei; Yang, Chunhua; Yao, Zhijun (2016). [IEEE 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP) - Yangzhou, China (2016.10.13-2016.10.15)] 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP) - The finger vein recognition based on shearlet. , (), 1–5. doi:10.1109/wcsp.2016.7752499
18. P. S. Solanki, Y. B. Adhyaru and M. Choudhary, "EHSM - Heartbeat Sensors & Machine Learning for Horse Health Monitoring," 2024 Parul International Conference on Engineering and Technology (PICET), Vadodara, India, 2024, pp. 1-6, doi: 10.1109/PICET60765.2024.10716092
19. Prabakaran, P., Choudhary, M., Kumar, K., Loganathan, G. B., Salih, I. H., Kumari, K., & Karthick, L. (2024). Integrating Mechanical Systems With Biological Inspiration: Implementing Sensory Gating in Artificial Vision. In S. Padhi (Ed.), Trends and Applications in Mechanical Engineering, Composite Materials and Smart Manufacturing (pp. 193-206). IGI Global Scientific Publishing. <https://doi.org/10.4018/979-8-3693-1966-6.ch012>.