

Surface modified bioactive silicate based material with PRF - regenerative medicine

Mohamed Rifaath^{1*}, Dr. Bargavi²

¹*Department of Oral Pathology Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Saveetha University, Chennai-600 077, India Email: 152001015.sdc@saveetha.com

²Department of Oral pathology Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Saveetha University, Chennai-600 077, India Email: Bargavip.sdc@saveetha.com

Abstract:

Introduction: Surface modification is the process of adding bioactive elements to the surface of a silicate to improve its ability to interact with biological systems. These bioactive elements, such as growth factors or peptides, can be used to modify the surface properties of the silicate to enhance its ability to stimulate certain cellular activities. These cellular activities can be used to improve tissue regeneration.

Aim: The aim of the study is to elucidate Surface modified bioactive silicate based material with PRF - regenerative medicine

Materials and method: Use a range of analytical methods to describe the altered substance. This comprises Fourier-transform infrared spectroscopy (FTIR) for chemical composition, X-ray diffraction (XRD) for crystalline phases, and scanning electron microscopy (SEM) for surface morphology.

Results: PRF is a strong contender for translational applications due to its ability to promote cell adhesion, proliferation, and tissue integration.

Conclusion: The combination of Platelet-Rich Fibrin (PRF) with a surface-modified bioactive silicate-based material is encouraging for the field of regenerative medicine.

Keywords: silicate, PRF, regenerative medicine, bio active

Introduction:

Surface modification is the process of adding bioactive elements to the surface of a silicate to improve its ability to interact with biological systems. These bioactive elements, such as growth factors or peptides, can be used to modify the surface properties of the silicate to enhance its ability to stimulate certain cellular activities. These cellular activities can be used to improve tissue regeneration(1) (2)

Surface modification is a type of biomaterial that is designed to enhance the interaction of biological systems, especially in the regenerative medicine context. The modified surface properties of the material are designed to improve the ability of cells to adhere, proliferate, and differentiate. This customized approach allows for the utilization of biological properties of the material while improving its functionality for targeted regenerative medicine applications. The synergy of surface-modified biological silicates with biological constituents, such as PRF, further highlights the potential of this approach to advance therapeutic strategies(3)

Platelet- Rich Fibrin(PRF) has surfaced as a compelling and protean element in the realm of regenerative drugs, attracting the attention of experimenters and clinicians alike. This essay explores the multifaceted aspects of PRF, probing into its composition, medication, and different operations across colorful medical disciplines(4,5).

PRF is a autologous platelet concentrate deduced from the case's own blood. The medication involves a simple centrifugation process, concentrating platelets and growth factors within a fibrin matrix. This unique composition sets PRF piecemeal from other platelet-rich products, offering advantages in terms of sustained release of growth factors and enhanced natural conditioning(6).

One of the primary merits of PRF lies in its regenerative eventuality. The concentrated platelets within PRF contain a force of bioactive motes, including platelet- reduced growth factor(PDGF), transubstantiation growth factor- beta(TGF- β), and vascular endothelial growth factor(VEGF). These growth factors play vital places in colorful stages of towel mending and rejuvenescence, stimulating cell migration, proliferation, and isolation(6,7).

In the field of dentistry, PRF has set up wide operations in oral and maxillofacial surgery. Its use in dental implantology, bone grafting, and periodontal surgeries has demonstrated accelerated mending, reduced inflammation, and better towel integration. Beyond dentistry, PRF has shown promise in orthopedics, dermatology, and plastic surgery, showcasing its versatility across medical specialties. (7)

PRF's autologous nature mitigates enterprises related to immunogenicity and complaint transmission, enhancing its safety profile. Likewise, its cost- effectiveness and fairly straightforward medication make it an charming option in clinical settings(7,8).

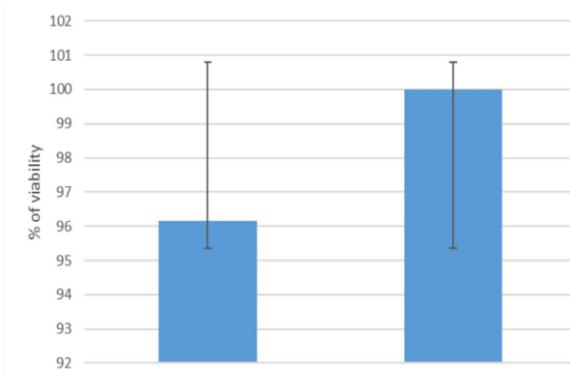
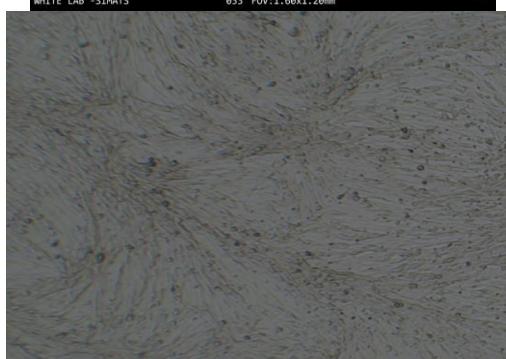
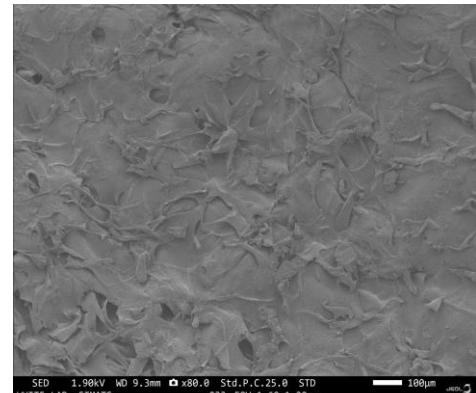
As exploration advances, the operations of PRF continue to expand. From habitual crack mending to sports drugs, its implicit impact on patient issues is profound. Ongoing studies explore new avenues, including the combination of PRF with advanced biomaterials, aiming to amplify its regenerative goods.

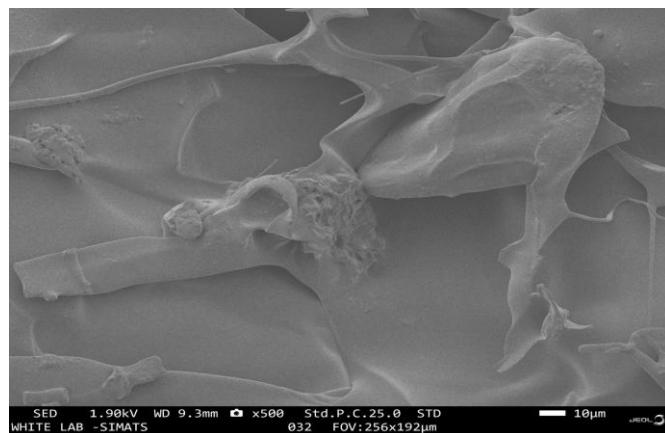
MATERIALS AND METHOD:

Several crucial steps are involved in the process of creating and assessing a surface-modified bioactive silicate-based material with Platelet-Rich Fibrin (PRF) in the context of regenerative medicine.

1. Material Synthesis: - Start by creating a bioactive material based on silicate that has a regulated composition and size of particles. Precipitation, sol-gel processes, or other appropriate methods catered to the particular material requirements may be used in this.

2. Surface Modification: - Apply surface alterations to improve the bioactivity of the substance. Functionalization with biomolecules, peptides, or growth factors that are known to encourage tissue regeneration are a few examples of this. Make sure the modification process is repeatable and controlled.




3. Preparing the PRF: To prepare the PRF, draw autologous blood from the patient. To obtain the PRF clot, centrifuge according to a standard procedure. Optimize PRF composition by adjusting centrifugation parameters, such as speed and time.


4. Integration of PRF with Silicate Material - Add PRF to the silicate material that has had its surface altered. This could entail combining the silicate material in a regulated setting with the PRF clot or any of its constituent parts. To enable the continuous release of growth factors, make sure that integration is completed.

5. Characterization of the Composite Material - Use a range of analytical methods to describe the altered substance. This comprises Fourier-transform infrared spectroscopy (FTIR) for chemical composition, X-ray diffraction (XRD) for crystalline phases, and scanning electron microscopy (SEM) for surface morphology.

With the goal of providing a methodical approach to the development and evaluation of a surface-modified bioactive silicate-based material integrated with PRF for regenerative medicine applications, this comprehensive materials method was created.

RESULTS AND DISCUSSION:

In the field of regenerative medicine, the combination of Platelet-Rich Fibrin (PRF) and a surface-modified bioactive silicate-based material shows great promise. By combining the regenerative potential of PRF with the synergistic effects of a customized biomaterial, this novel approach provides a multimodal approach to tissue healing and repair.(7–9)

Enhancing the bioactivity of bioactive silicate materials is largely dependent on surface modification. The goal of adding bioactive substances like peptides or growth factors is to improve the microenvironment and encourage cellular responses. The purpose of this modification is to support the three essential components of tissue regeneration: cell adhesion, proliferation, and differentiation(10).

PRF is a rich source of growth factors and platelets because it is made from the patient's own blood. By adding PRF to the silicate material, a dynamic component that can release bioactive molecules over time is introduced. The continuous release of growth factors, such as TGF- β and platelet-derived growth factor (PDGF), enhances the composite material's capacity for regeneration.

Research conducted *in vitro* offers important insights into the molecular interactions that the composite material has with cells. The cellular responses that have been observed, such as elevated differentiation or increased proliferation, provide initial proof of the material's regenerative effectiveness. Further *in vivo* research employing animal models closes the knowledge gap between lab results and practical tissue regeneration, offering a more thorough comprehension of the material's functionality.

This composite material's adaptability broadens its use in a variety of medical specialties. It could be useful in dentistry for periodontal procedures or for promoting bone regeneration around dental implants. In addition to dentistry, other fields that could benefit from this approach include orthopedics, dermatology, and plastic surgery, demonstrating how flexible it is in a variety of clinical settings.

Because PRF is autologous, there are fewer worries about immunogenicity or disease transmission when using it in the composite material. This provides an additional degree of safety. This feature, which is in line with the larger trend of using the patient's own biological materials for therapeutic purposes, is especially helpful in the context of personalized medicine.

In summary, an intriguing area of regenerative medicine is the combination of PRF with a surface-modified bioactive silicate-based substance. Using the best features of both materials, this novel composite material provides a customized and patient-specific approach to tissue regeneration in a variety of medical specialties. In the field of regenerative medicine, this strategy's continued investigation has the potential to advance therapeutic interventions and enhance patient outcomes.

CONCLUSION:

In summary, the combination of Platelet-Rich Fibrin (PRF) with a surface-modified bioactive silicate-based material is encouraging for the field of regenerative medicine. The favorable results of this investigation highlight the possibility that this novel composite material will transform tissue healing and repair.

The increased bioactivity attained by carefully altering the silicate material's surface demonstrates a deliberate and successful method of influencing cellular reactions. By providing a dynamic interplay of growth factors that can promote tissue regeneration over an extended period of time, the addition of PRF further enhances the regenerative potential.

The composite's safety profile is enhanced by PRF's autologous nature, which is consistent with patient-centric medicine ideals. This feature, along with the noted advantages in terms of the surface-modified bioactive silicate-based material containing PRF is a strong contender for translational applications due to its ability to promote cell adhesion, proliferation, and tissue integration.

REFERENCES:

1. Li L. Laser Surface Modification Silicate Glass. 2000. 212 p.
2. Kushihiki N, Yamaguchi K, K. SDK. Surface Modification of Silicate Base Material. 1986. 6 p.

3. Wang Y. Surface Modification of Silicate Substrates. 2007. 134 p.
4. Singh N, Kashyap M. Is Autologous Sticky Bone Better Than a Simple Mixture of Autologous PRF and Bioactive Glass in the Regeneration of Human Periodontal Intrabony Defects? An Extensive Clinical and CBCT Study. *Int J Periodontics Restorative Dent.* 2023 Oct 24;(7):s264–82.
5. Shanbhag S, Al-Sharabi N, Kampleitner C, Mohamed-Ahmed S, Kristoffersen EK, Tangl S, et al. The use of mesenchymal stromal cell secretome to enhance guided bone regeneration in comparison with leukocyte and platelet-rich fibrin. *Clin Oral Implants Res [Internet].* 2023 Nov 14; Available from: <http://dx.doi.org/10.1111/clr.14205>
6. Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. *Biomed Pharmacother.* 2023 Dec;168:115795.
7. Cheng B, Fu X. Platelet-Rich Plasma in Tissue Repair and Regeneration: Technology and transformation application. Springer Nature; 2023. 184 p.
8. Celikten M, Sahin H, Senturk GE, Bilsel K, Pulatkan A, Kapicioglu M, et al. The Effect of Platelet-Rich Fibrin, Platelet-Rich Plasma, and Concentrated Growth Factor in the Repair of Full Thickness Rotator Cuff Tears. *J Shoulder Elbow Surg [Internet].* 2023 Oct 26; Available from: <http://dx.doi.org/10.1016/j.jse.2023.09.028>
9. Liu H, Ding J, Zhao C. Bioactive bone regenerative materials and bionic prosthesis interfaces. Frontiers Media SA; 2023. 317 p.
10. Miron RJ, Choukroun J. Platelet Rich Fibrin in Regenerative Dentistry: Biological Background and Clinical Indications. John Wiley & Sons; 2017. 407 p.