Preliminary On Results Lattices

DR.Kvr.Srinivas ${ }^{1{ }^{1 *},}$ Mr.Vsn.Murthy ${ }^{2}$

${ }^{1 *}$ Professor-GIET Engineering College
Asst.Professor-GIET Engineering College
1.Abstract : In the Paper Mainly we have obtained certain Preliminary results on Lattices and also we obtain certain characterization.
2.Introduction: Lattices Plays important role in all Branches of sciences and Engineering, A Lattice is a non-empty set defined on 'L' which satisfy.
3.Key Words: P.O. Set, Lattice cumulative ,Associative Independent sup \& Inf of Lattices and absorption Laws under meet \wedge and join \vee in the result.

1. we have the Lattice under binary relation ' \leq ' and also it is observed in theorem that when a Lattice is given under ordering ' \leq ' under join ' \vee ' and meet \wedge. If we Define a Lattice ' < ' under partial ordering ' \leq ' then $(<, \leq)$ is a unique Lattice which is obtained in theorems $3,4 \& 5$.

Def: Set $(<, \leq)$ be a P.o.set with sup $\{a, b\}$ and $\inf \{a, b\}$ exists for every $a, b \in L$. then the P.O. set in called a Lattice. Denoted $(<, \leq)$ as $\operatorname{Sup}\{a, b\}=a v b, \inf \{a, b\}=a \wedge b$.

Theorem Lattice: A P.o. set ($<, \leq$) is a Lattice iff there exists a finite subset H of ' L' such that VH and \wedge H exists
Proof: set $(<, \leq)$ be a P.O. set in which any two elements have sup \& inf . then ($<, \leq$) is a Lattice. Conversely let ($<, \leq$) be a Lattice and H is a subset of L .
A subset of L

Case: If $\mathrm{H}=\{\mathrm{a}\}$ then $\mathrm{VH}=\wedge \mathrm{H}$.
If $\mathrm{H}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ we show that VH\& $\wedge \mathrm{H}$ exists
Let $d=\operatorname{Sup}\{a, b\}$ and $e=\sup \{d, c\}$
Then $\mathrm{d} \geq, \mathrm{d} \geq \mathrm{b}$ and $\mathrm{e}>\mathrm{d}, \mathrm{e} \geq, \mathrm{c}$.
$e \geq a, b, c$ and Hence ' e ' is the upper bound of $\{a, b, c\}$
Let ' f ' be any upper bound of $\{a, b, c\}$ then
$\mathrm{f} \geq \mathrm{a}, \mathrm{f} \geq \mathrm{a}, \mathrm{f} \geq \mathrm{b}, \mathrm{f} \geq \mathrm{c}$
$\Rightarrow \mathrm{f} \geq \sup \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{f} \geq \mathrm{d}, \mathrm{f} \geq \mathrm{c}$.
$\Rightarrow \mathrm{f} \geq \mathrm{su}, \mathrm{p}\{\mathrm{d}, \mathrm{c}\}$ and hence $\mathrm{f} \geq \mathrm{e}$.
so that $\sup \{a, b, c\}=(a v b) v c$.
Similarly $\operatorname{Inf}\{a, b, c\}$ exists.
Denote $\sup \{a, b\}=a \vee b$ and $\operatorname{Inf}\{a, b\}=a \wedge b$.
Where v and \wedge are two binary Operations.
on L satisfy the following Laws.

1. Commutative : For $\mathrm{a}, \mathrm{b} \in<$.
$a \vee b+\sup \{a, b\}=\sup \{b, a\}=b \vee a$.
2. Associative: For $\mathrm{a}, \mathrm{b}, \mathrm{c} \in<$, (avb) vc= av (bvc)

Now (avb) vc $=\operatorname{Sup}\{a v b, c\}$
$=\operatorname{Sup}\{\mathrm{a}, \mathrm{b} \vee \mathrm{c}\}$
$=\operatorname{Sup}\{a, b, c\}$ (Claim)
$a \vee(b \vee C)=\operatorname{Sup}\{a, \quad b \vee c\}$
$=\operatorname{Sup}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ (claim)
Let $d=\operatorname{Sup}\{a, b\}, e=\sup \{d, c\}$
then $\mathrm{d} \geq \mathrm{a}, \mathrm{d} \geq \mathrm{b}, \quad \mathrm{e} \geq \mathrm{d}, \mathrm{e} \geq \mathrm{c}$.
$e \geq a, b, c$ ' e ' is an U.B. of $\{a, b, c\}$.
Let ' f ' be any U.B of $\{a, b, c\}$
$\mathrm{f} \geq \mathrm{a}, \mathrm{b}, \mathrm{c} \Rightarrow \mathrm{f} \geq \mathrm{e}$.
Hence 'e' is Sup $\{a, b, c\}$
Similiarly $a \vee(b V C)=\operatorname{Sup}\{a, b, c\}$
Now we Claim that
$a, \vee a_{2} \vee \ldots . . \vee$ an-1, \vee an $=\operatorname{Sup}\left\{a_{1}, \operatorname{Sup}\left\{a 2, a 3 \ldots . . . a n-1 a n d a_{n}\right\}\right.$
It $n=1$ then $a_{1=}$ Sup $\left\{a_{1}\right\}$ Hence it in Clear.
By using Mathematical introduction. Let it be true for $\mathrm{n}-1$.
$\operatorname{Sup}\{a 1, a 2 \ldots$ an -1, an $\}=\left(a_{1} \vee a_{2} \vee---\vee\right.$ an-1 $) \vee$ an
$=\operatorname{Sup}\left\{a_{1}, \operatorname{Sup}\left\{a_{2}-a_{-1}\right\}\right.$.
Hence is true for any finite elements
$\left\{a_{1}, a_{2} a_{1} \ldots a_{n}\right\}$ of L and hence
$a_{1} \vee a 2 \vee \ldots . \vee$ an is uniquely determined.
Theorem 2: Let (L, \leq) be a Lattice, where ' \leq ' is a binary operation an \leq satisfying Laws and transitive Laws and Sup $\{a, b), \operatorname{Inf}\{a, b\}$ exists for all a, b, in L :
Define two "binary operations \vee and \wedge in $<$ in $(<, \vee, \wedge)$
by $\mathrm{a} \vee \mathrm{b}=\operatorname{Sup}\{\mathrm{a}, \mathrm{b}\}$ and $. \mathrm{a} \wedge \mathrm{b}=\inf \{\mathrm{a}, \mathrm{b}\}$ then $(<, \wedge, \wedge)$ is a Lattice.
Theorem 3: Let $\langle\mathrm{L}, \vee, \wedge>$ be a Lattice, where \vee and \wedge are binary Operations on L , with the $\mathrm{a} \vee \mathrm{b}=\sup \{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{a} \wedge \mathrm{b}=$ $\operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}$.
Define a relation ' \leq ' on \leq by $\leq b$ ' if $a \wedge b=a$ then $\leq L, \leq \geq$ is a Lattice.

Proof : 1. Relative : $\mathrm{a} \leq$ since $\mathrm{a} \wedge \mathrm{a}=\operatorname{Inf}\{\mathrm{a}, \mathrm{a}\}$
2. Antisysmetic: Let $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{a}$ for any $\mathrm{a}, \mathrm{b} \in \mathrm{L}$ then
and for $\mathrm{b} \leq \mathrm{a}$ and $\mathrm{a} \wedge \mathrm{b}=\operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}=\in \mathrm{a}$
Inf $\{b, a\}=b \wedge a=b$
Hence $a=b$ ' \wedge ' is commutative and $\operatorname{Inf}\{a, b\}=\operatorname{Inf}\{b, a\}$.
3. Transitive: Let $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$.

Then we have to show that $\mathrm{a} \leq \mathrm{c}$.
$\mathrm{a} \leq \mathrm{b}, \operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}-\mathrm{a}$
$\mathrm{b} \leq \mathrm{c}$ and $\operatorname{Inf}\{\mathrm{b}, \mathrm{c}\}=\mathrm{b} \wedge \mathrm{c}$.
$a=a \wedge b=a \wedge(b \wedge c)=(a \wedge b) \wedge c=a \wedge c$.
Hence $\mathrm{a} \leq \mathrm{c}$. Hence \leq is Transitive.
Now we Claim that ' \leq ' is a partial orders on $<$.
Now we show that $\operatorname{Sup}\{a, b\}=a \vee b, \operatorname{Inf}\{a, b\}=a \wedge b$.
Since $a \wedge(a \vee b)=a \Rightarrow a \leq a \vee b$
$b \wedge(a \vee b)=b \Rightarrow b \vee b$.
hence $a \vee b$ is an O.B. of $\{a, b\}$
Let 'd' be an O.B.of $\{a, b\}$
$d \geq a, d \geq b \Rightarrow d \geq a \vee b$
hence $a \vee b=\sup \{a, b\}$.
similarly $a \vee(a \wedge b)=a \Rightarrow a \wedge b \leq a$ and $b \wedge(a \wedge b) \Rightarrow a \wedge b \leq b$.
hence $a \wedge b$ is Lower bound of $\{a, b\}$.
Let ' e ' be any Lower bound of $\{a, b\}$ then $e \leq a, e \leq b \Rightarrow e \leq a \wedge b$.
Hence $\mathrm{a} \wedge \mathrm{b}=\operatorname{Inf}[\mathrm{a} \wedge \mathrm{b}=\operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}$ Imply that (L, \leq) is Lattice.
Theorem 4: Let (L, \vee, \wedge) be a Lattice, where \vee and \wedge are two binary operations on L with $a \vee b=\sup \{a, b\}$ and Inf $\{\mathrm{a}, \mathrm{b}\}=\mathrm{a} \wedge \mathrm{b}$.
Define ' \leq ' on \leq by $\mathrm{a} \leq \mathrm{b}$ if $\mathrm{a} \wedge \mathrm{b}=\mathrm{a}$. Then $\leq \leq, \leq \geq$ is a Lattice and the Ordering ' \leq ' is unique.
Proof: If ' \leq ' be any binary operation defined on $<$,defined by $\mathrm{a} \leq, \mathrm{b}$ if $\mathrm{a} \vee \mathrm{b}=\mathrm{b}$
Claim: $\leq_{1}=\leq$
let $(a, b) \in \leq$ iff $a \leq b$ if $a \vee b=b$
if $a \leq b$ if $(a, b) \square \leq$.
Imply that $\leq, \leq, \leq \rightarrow \otimes$
Let $(a, b) \in \leq$, iff $a \leq_{1} b \operatorname{iff} \operatorname{Inf}\{a, b\}=a$
Iff $\mathrm{a} \leq \mathrm{b}$ iff $(\mathrm{a}, \mathrm{b}) \in \leq$ imply that
$\leq=\leq_{1} \leq_{1}, \leq \leq \rightarrow \otimes \otimes$
For an \oplus and $\otimes \otimes \leq=\leq$.it is also observed that $a \nabla b=a \vee b$ and $a \wedge b=a \wedge b$.
Now we claim that \leq is a partial on dew on \leq
Now we s.t. $\sup \{a, b\}=a y b$
$\operatorname{Inf}\{a, b\}=a \wedge b$.
Since $a \wedge(a \vee b)=a \Rightarrow a \leq a \vee b$,
$b \wedge(a \vee b)=b \Rightarrow b \leq a \vee b$
hence $a \vee b$ is an O.B. of $\{a, b\}$
Let 'd' be an U.B.of $\{a, b\}$
$d \geq a, d \geq b \Rightarrow d \geq a \vee b$
hence $a \vee b=\sup \{a, b\}, a \wedge b \leq a$.
similarly $a \vee(a \wedge b)=a \Rightarrow$
and $b \vee\left(a^{\wedge} b\right)=b \Rightarrow a \wedge b \leq b$.
hence $a \wedge b$ is Lower bound of $[a, b\}$
let 'e'be any lower bound of $\{a, b\}$
then $e \leq a, e \leq b \Rightarrow e \leq a \wedge b$.
hence $\mathrm{a} \wedge \mathrm{b}=\operatorname{Inf}\{\mathrm{a}, \mathrm{b}\}$ imply that (\leq, \leq) is a Lattice.

Theorem 5: Let $(<, \vee, \wedge)$ be a Lattice, where \vee and \wedge are two binary operations on L with $a \vee b=\sup \{a, b\}$ and $a \wedge b=\operatorname{Inf}$ \{a,b\}.
Define: $<$ on \leq by a $\leq \mathrm{b}$ if $\mathrm{a} \wedge \mathrm{b}=\mathrm{a}$ then $(<, \leq)$ is a Lattice
And the ordering \leq is Unique.
Proof: If ' \leq_{1} ' be any binary operation on $<$ defined by $a \leq_{1} \mathrm{~b}$ iff $\mathrm{a} \vee \mathrm{b}=\mathrm{b}$
Claim: $\leq_{1}=\leq_{1}$
Let $(a, b) \in \leq$ if $a \leq b$ if $a \vee b=b$
If $\mathrm{a} \leq \mathrm{b}$ if (a, b) if $(\mathrm{a}, \mathrm{b}) \square \leq$
Imply that $\leq \leq \leq \rightarrow$
Let $(a, b) \in \leq$, if $a \leq b$ if
$\operatorname{Inf}\{a, b\}=a$
Inf $a \leq b$ if $(a, b) \in \leq$
Imply that $\leq, \leq \leq \rightarrow \otimes \otimes$
F or an \oplus and $\otimes \otimes \leq=\leq_{1}$
It in also Observed that
$a \nabla v=a \vee b$ and $a \wedge b=a \wedge b$
The following is an Example of a p.o. set in which supreme of the set consisting of any two elements exists and infimum doesn't exists.

Example 1: Let $x=$ Infinite set. $\mathrm{P}=$ Set of all non-employ is subsets of x Define \leq as 'c' (i.e) for $\mathrm{A}, \mathrm{B} \square \mathrm{P}, \mathrm{A} \leq \mathrm{B}$ IF $\mathrm{A} \leq \mathrm{B}$ iff $\mathrm{A} \leq \mathrm{B}$
For $\mathrm{A}, \mathrm{B} \square \mathrm{p} \Rightarrow \mathrm{A} \neq \mathrm{Q}, \mathrm{B} \neq \mathrm{Q} \Rightarrow \mathrm{AUB} \neq \emptyset$
So that $\mathrm{AUB} \in \mathrm{P}$
Now we claim that $\mathrm{A} \vee \mathrm{B}=\mathrm{AUB}$
Since $\mathrm{A} \leq \mathrm{AUB}$ and $\mathrm{B} \leq \mathrm{AUB} \Rightarrow \mathrm{AUB}$ is an U.B OF $\{\mathrm{A}, \mathrm{B}\}$
Let 'd'be any U.B.of $\{A, B\}$ Then $D \geq A, D \geq B$ so that $A U B=A V B$
Let A, B be any two non-empty subsets of x such that $A \cap B=\varnothing$
Let' \square ' p be any lower bound of $\{A, B\}$
Then $P \leq A, P \leq B \Rightarrow P \leq A \cap B \Rightarrow P=\emptyset$
Hence $\mathrm{A} \cap \mathrm{B}$ doesn't exist.
The following is an example of a p.o. set in which Infinimum of the set consisting of any two elements exists and supreme doesn't exists.

Example 2: Set $\mathrm{x}=$ infinite set and $\mathrm{P}=$ the set of all subsets of X .
Let \leq be a partial ordering on ' P ' now we $\mathrm{S} . \mathrm{T}$. $\mathrm{A} \wedge \mathrm{B}$ and AUB doesn't exist for any $\mathrm{A}, \mathrm{B} \square \mathrm{P}$.
Since $A \cap B \leq A, A \cap B \leq B \Rightarrow A \cap B$ is a lower bound of $\{A, B\}$
Let A, B beany two subsets of ' X ' such that
$\mathrm{AUB}=\mathrm{x}$
Let $c \in p$ be any U.B. OF $\{A, B\}$
$\Rightarrow \mathrm{AUB} \leq \mathrm{C}$.
Let $\mathrm{A} \leq \mathrm{c}, \mathrm{B} \leq \mathrm{C} \Rightarrow \mathrm{AUB} \leq \mathrm{C}$ so that $\mathrm{X} \leq \mathrm{C}$
Hence $X=C$. which is a contradiction as $C \in P$.
So that AUB doesn't exists in P.

Def 2: covering of two elements in a P.O. se let (p. \leq) be a p.o. set and let $a, b \in p$ than we say that ' a 'covers ' b ' b is covered by a if $1 . \mathrm{b} \leq \mathrm{a} 2$. There exists $\mathrm{x} \in \mathrm{p}$.
such that $\mathrm{b} \leq \mathrm{x} \leq \mathrm{a}$ we write this as $\mathrm{b} \leq \mathrm{a}$.
Theorem 6 : Let (P, \leq) be a finite P.O. set and set $\mathrm{a}, \mathrm{b} \square \mathrm{p}$ then $\mathrm{a} \leq \mathrm{b}$ if $\mathrm{a}=\mathrm{b}$
There exists a finite sequence $\left\{\mathrm{x}_{0}=\mathrm{a}, \mathrm{x}_{\mathrm{n}-1}=\mathrm{b}\right.$ and x_{i} \qquad $\leq x_{i+1}$ for $0 \leq i \leq n-1$
Proof: Let (p, \leq) be a finite p.o. set and let $\mathrm{a}, \mathrm{b} \in \mathrm{p}$. If the exists a finite sequence $\mathrm{a}=\mathrm{x}_{0} \leq \mathrm{x}_{1} \leq---\leq \mathrm{x}_{\mathrm{n}-1}=\mathrm{b}$, then $\mathrm{a} \leq \mathrm{b}$.
Let (p, \leq) be a P.O. set with $a \leq b \nabla a, b \in p$.
If $a=b$ then it is clear.
If $a \leq b$: then we have to construct a since sequence $\left\{a=x_{0}, x_{1}---x_{n-1}=b\right\}$
Let ' H ' be any subset of ' P ' which in contains non-elements say $\left\{\mathrm{x}_{0}, \mathrm{X}_{1}--\cdots-\mathrm{x}_{\mathrm{m}-1}\right\}$
With $\mathrm{x}_{0}=\mathrm{a}$, as least element and $\mathrm{x}_{\mathrm{n} \text {-a }}=\mathrm{b}$ as greatest element $\mathrm{a}=\mathrm{x}_{0} \leq \mathrm{x}_{1} \leq---\leq \mathrm{x}_{\mathrm{n}-1}$
Of $x_{i} \neq x_{i}+1, \quad x \in p, x_{i} \leq x \leq x_{i}+1$
Then $\mathrm{HU}\{\mathrm{x}\}$ contains +1 elements which is a contradiction as H contains m elements and hence $\mathrm{x}_{\mathrm{i}}------------\leq \mathrm{x}_{\mathrm{i}}+1$.

References:

1. General Lattice Theory- Gratzer
2. Garrett Birlchoff- Lattice Theory-AMS Colloquium Publications Vol: 25, ISBN-978-0821810255
3. A Course in Universal Algebra, Springer - Verlog, ISBN 3-540-90578-2
