

Preliminary On Results Lattices

DR.Kvr.Srinivas^{1*,} Mr.Vsn.Murthy²

^{1*} Professor-GIET Engineering College Asst.Professor-GIET Engineering College

1.Abstract : In the Paper Mainly we have obtained certain Preliminary results on Lattices and also we obtain certain characterization.

2.Introduction: Lattices Plays important role in all Branches of sciences and Engineering, A Lattice is a non-empty set defined on 'L' which satisfy.

3.Key Words: P.O. Set, Lattice cumulative ,Associative Independent sup & Inf of Lattices and absorption Laws under meet \land and join \lor in the result.

1. we have the Lattice under binary relation ' \leq ' and also it is observed in theorem that when a Lattice is given under ordering ' \leq ' under join ' \lor ' and meet \land . If we Define a Lattice '<' under partial ordering ' \leq ' then ($<, \leq$) is a unique Lattice which is obtained in theorems 3,4&5.

Def: Set $(<,\leq)$ be a P.o.set with sup $\{a,b\}$ and inf $\{a,b\}$ exists for every $a,b \in L$. then the P.O. set in called a Lattice. Denoted $(<,\leq)$ as Sup $\{a,b\} = avb$, inf $\{a,b\} = a \land b$.

Theorem Lattice: A P.o. set $(<,\leq)$ is a Lattice iff there exists a finite subset H of 'L' such that VH and \wedge H exists

Proof: set $(<,\leq)$ be a P.O. set in which any two elements have sup & inf . then $(<,\leq)$ is a Lattice. Conversely let $(<,\leq)$ be a Lattice and H is a subset of L. A subset of L

Case: If $H = \{a\}$ then $VH = \wedge H$. If $H = \{a, b, c\}$ we show that VH& $\land H$ exists Let $d = \sup \{a, b\}$ and $e = \sup \{d, c\}$ Then $d \ge d \ge b$ and $e > d, e \ge c$. $e \ge a,b,c$ and Hence 'e' is the upper bound of $\{a,b,c\}$ Let 'f' be any upper bound of $\{a,b,c\}$ then $f \ge a, f \ge a, f \ge b, f \ge c$ \Rightarrow f \geq sup {a,b} and f \geq d, f \geq c. \Rightarrow f \ge su,p {d,c} and hence f \ge e. so that sup $\{a,b,c\} = (avb)vc$. Similarly Inf {a,b,c} exists. Denote sup $\{a,b\} = a \lor b$ and Inf $\{a,b\} = a \land b$. Where v and \wedge are two binary Operations. on L satisfy the following Laws. 1. **Commutative** : For $a, b \in <$. $a \lor b + \sup \{a,b\} = \sup \{b,a\} = b \lor a$. 2. Associative: For a,b,c $\in <$, (avb) vc= av (bvc) Now (avb) $vc = Sup\{avb,c\}$ =Sup {a, b \lor c} = Sup {a,b,c} (Claim) $a \lor (b \lor C) = Sup \{a, b \lor c\}$ = Sup {a, b, c} (claim) Let $d = \sup \{a,b\}$, $e = \sup \{d,c\}$ then $d \ge a, d \ge b$, $e \ge d, e \ge c$. $e \ge a,b,c$ 'e' is an U.B. of $\{a,b,c\}$. Let 'f' be any U.B of {a,b,c} $f \ge a, b, c \implies f \ge e.$ Hence 'e' is Sup $\{a,b,c\}$ Similarly $a \lor (bVC) = Sup \{a,b,c\}$ Now we Claim that

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504 Vol 25, No. 1S (2024) http://www.veterinaria.org Article Received: Revised: Accepted:

a, $\lor a_2 \lor \ldots \lor a_n-1$, $\lor a_n = \sup \{a_1, \sup\{a_2, a_3, \ldots, a_n-1 \text{ an } a_n\}$ It n=1 then $a_{1=} \sup \{a_1\}$ Hence it in Clear. By using Mathematical introduction. Let it be true for n-1. Sup $\{a_1, a_2, \ldots, a_{n-1}, a_n\} = (a_1 \lor a_2 \lor \cdots \lor a_n-1) \lor a_n$ = Sup $\{a_1, \sup\{a_2-a_{n-1}\}$. Hence is true for any finite elements $\{a_1, a_2, \ldots, a_n\}$ of L and hence $a_1 \lor a_2 \lor \ldots \lor a_n$ is uniquely determined.

Theorem 2: Let (L,\leq) be a Lattice, where ' \leq ' is a binary operation an \leq satisfying Laws and transitive Laws and Sup {a,b}, Inf {a,b} exists for all a,b, in L: Define two "binary operations \lor and \land in < in $(<,\lor,\land)$ by $a\lor b =$ Sup { a,b} and $.a\land b =$ inf {a,b} then $(<,\land,\land)$ is a Lattice.

Theorem 3: Let $\langle L, \lor, \land \rangle$ be a Lattice, where \lor and \land are binary Operations on L, with the $a\lor b= \sup \{a,b\}$ and $a\land b= \inf \{a,b\}$.

Define a relation ' \leq ' on \leq by \leq b' if a \wedge b=a then \leq L, $\leq\geq$ is a Lattice.

Proof : 1. Relative : $a \le since a \land a = Inf \{a, a\}$ 2. Antisysmetic: Let $a \le b$ and $b \le a$ for any $a, b \in L$ then and for $b \le a$ and $a \land b = Inf \{a, b\} = \in a$ Inf $\{b,a\} = b \land a = b$ Hence $a=b' \land is$ commutative and $Inf \{a,b\}=Inf \{b,a\}$. Transitive: Let $a \le b$ and $b \le c$. 3 Then we have to show that $a \le c$. $a\leq b$, Inf $\{a,b\}$ -a $b \le c$ and $Inf \{b, c\} = b \land c$. $a = a \land b = a \land (b \land c) = (a \land b) \land c = a \land c.$ Hence $a \le c$.Hence \le is Transitive. Now we Claim that ' \leq ' is a partial orders on <. Now we show that Sup $\{a,b\}=a\lor b$, Inf $\{a,b\}=a\land b$. Since $a \land (a \lor b) = a \Longrightarrow a \le a \lor b$ $b \land (a \lor b) = b \Longrightarrow b \lor b$. hence $a \lor b$ is an O.B. of $\{a,b\}$ Let 'd' be an O.B. of $\{a,b\}$ $d \ge a, d \ge b \Longrightarrow d \ge a \lor b$ hence $a \lor b = \sup\{a, b\}$. similarly $a \lor (a \land b) = a \Rightarrow a \land b \le a$ and $b \land (a \land b) \Rightarrow a \land b \le b$. hence $a \land b$ is Lower bound of $\{a, b\}$. Let 'e' be any Lower bound of $\{a,b\}$ then $e \le a, e \le b \Longrightarrow e \le a \land b$. Hence $a \land b = Inf [a \land b = Inf \{a, b\}$ Imply that (L, \leq) is Lattice.

Theorem 4: Let (L,\vee,\wedge) be a Lattice, where \vee and \wedge are two binary operations on L with $a\vee b= \sup \{a,b\}$ and Inf $\{a,b\}=a\wedge b$.

Define ' \leq ' on \leq by a \leq b if a \wedge b=a. Then $\leq\leq,\leq\geq$ is a Lattice and the Ordering ' \leq ' is unique.

Proof: If '<' be any binary operation defined on <,defined by a<,b if a \lor b=b **Claim:** $\leq 1 = \leq$ let (a,b) $\in \leq$ iff a \leq b if a \lor b=b if a \leq b if (a,b) $\Box \leq$. Imply that $\leq,\leq,\leq\rightarrow\otimes$ Let (a,b) $\in \leq$, iff a ≤ 1 b iff Inf {a,b}=a Iff a \leq b iff (a,b) $\in \leq$ imply that $\leq =\leq_1 \leq_1, \leq \leq \rightarrow \otimes \otimes$ For an \oplus and $\otimes \otimes \leq = \leq$.it is also observed that a ∇ b= a \lor b and a \land b=a \land b. Now we claim that \leq is a partial on dew on \leq Now we s.t. sup {a,b} = ayb REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504 Vol 25, No. 1S (2024) http://www.veterinaria.org Article Received: Revised: Accepted:

Inf $\{a,b\} = a \land b$. Since $a \land (a \lor b) = a \Rightarrow a \le a \lor b$, $b \land (a \lor b) = b \Rightarrow b \le a \lor b$ hence $a \lor b$ is an O.B. of $\{a,b\}$ Let 'd' be an U.B.of $\{a,b\}$ $d \ge a, d \ge b \Rightarrow d \ge a \lor b$ hence $a \lor b = \sup \{a,b\}, a \land b \le a$. similarly $a \lor (a \land b) = a \Rightarrow$ and $b \lor (a \land b) = b \Rightarrow a \land b \le b$. hence $a \land b$ is Lower bound of $\{a,b\}$ let 'e' be any lower bound of $\{a,b\}$ then $e \le a, e \le b \Rightarrow e \le a \land b$. hence $a \land b = Inf \{a,b\}$ imply that (\le, \le) is a Lattice.

Theorem 5: Let (\langle, \lor, \land) be a Lattice, where \lor and \land are two binary operations on L with $a\lor b= \sup \{a,b\}$ and $a\land b= Inf \{a,b\}$.

Define: < on \le by a \le b if a \land b =a then ($<,\le$) is a Lattice And the ordering \leq is Unique. **Proof:** If \leq_1 be any binary operation on < defined by $a \leq_1 b$ iff $a \lor b = b$ Claim: $\leq_1 \leq \leq_1$ Let $(a,b) \in \leq \text{ if } a \leq b \text{ if } a \lor b = b$ If $a \le b$ if (a,b) if $(a,b) \square \le$ Imply that $\leq \leq \leq \rightarrow$ Let $(a,b) \in \leq$, if $a \leq b$ if Inf $\{a,b\}=a$ Inf a $\leq b$ if $(a,b) \in \leq$ Imply that $\leq \leq \rightarrow \otimes \otimes$ F or an \oplus and $\otimes \otimes \leq = \leq_1$ It in also Observed that $a\nabla v = a \lor b$ and $a \land b = a \land b$ The following is an Example of a p.o. set in which supreme of the set consisting of any two elements exists and infimum doesn't exists.

Example 1: Let $x = Infinite \text{ set. } P = \text{ Set of all non-employ is subsets of x Define <math>\leq$ as 'c' (i.e) for A,B $\Box P$, A \leq B IF A \leq B iff A \leq B For A,B $\Box p \Rightarrow A \neq Q$, B $\neq Q \Rightarrow AUB \neq \emptyset$ So that AUB \in P Now we claim that A \vee B=AUB Since A \leq AUB and B \leq AUB \Rightarrow AUB is an U.B OF {A,B} Let 'd'be any U.B.of {A,B} Then D \geq A,D \geq B so that AUB=AVB Let A,B be any two non-empty subsets of x such that A \cap B= \emptyset Let' \Box ' p be any lower bound of {A,B} Then P \leq A, P \leq B \Rightarrow P \leq A \cap B \Rightarrow P= \emptyset Hence A \cap B doesn't exist. The following is an example of a p.o. set in which Infinimum of the set consisting of any two elements exists and supreme doesn't exists.

Example 2: Set x= infinite set and P=the set of all subsets of X. Let \leq be a partial ordering on 'P' now we S.T. A \wedge B and AUB doesn't exist for any A,B \square P. Since A \cap B \leq A, A \cap B \leq B \Rightarrow A \cap B is a lower bound of {A,B} Let A,B beany two subsets of 'X' such that AUB=x Let c \in p be any U.B. OF {A,B} \Rightarrow AUB \leq C. Let A \leq c,B \leq C \Rightarrow AUB \leq C so that X \leq C Hence X=C. which is a contradiction as C \in P. So that AUB doesn't exists in P. REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504 Vol 25, No. 1S (2024) http://www.veterinaria.org Article Received: Revised: Accepted:

Def 2: covering of two elements in a P.O. se let $(p \le b)$ be a p.o. set and let $a, b \in p$ than we say that 'a'covers 'b' b is covered by a if 1. $b \le a$ 2. There exists $x \in p$. such that $b \le x \le a$ we write this as $b \le a$.

References:

- 1. General Lattice Theory- Gratzer
- 2. Garrett Birlchoff- Lattice Theory-AMS Colloquium Publications Vol: 25, ISBN-978-0821810255
- 3. A Course in Universal Algebra, Springer Verlog, ISBN 3-540-90578-2