Vol 25, No. 1S (2024) http://www.veterinaria.org

Article Received: Revised: Accepted:

Preliminary On Results Lattices

DR.Kvr.Srinivas^{1*}, Mr.Vsn.Murthy²

^{1*} Professor-GIET Engineering College, Rajahmundry Asst.Professor-GIET Engineering College, Rajahmundry

1.Abstract: In the Paper Mainly we have obtained certain Preliminary results on Lattices and also we obtain certain characterization.

2.Introduction: Lattices Plays important role in all Branches of sciences and Engineering, A Lattice is a non-empty set defined on 'L' which satisfy.

3.Key Words: P.O. Set, Lattice cumulative ,Associative Independent sup & Inf of Lattices and absorption Laws under meet \wedge and join \vee in the result.

1. we have the Lattice under binary relation '≤' and also it is observed in theorem that when a Lattice is given under ordering ' \leq ' under join ' \vee ' and meet \wedge . If we Define a Lattice '<' under partial ordering ' \leq ' then (<, \leq) is a unique Lattice which is obtained in theorems 3,4&5.

Def: Set $(<, \le)$ be a P.o.set with sup $\{a,b\}$ and inf $\{a,b\}$ exists for every $a,b \in L$, then the P.O. set in called a Lattice. Denoted (<, \le) as Sup {a,b} = avb, inf { a,b} = a \land b.

Theorem Lattice: A P.o. set $(<, \le)$ is a Lattice iff there exists a finite subset H of 'L' such that VH and \land H exists

Proof: set $(<,\leq)$ be a P.O. set in which any two elements have sup & inf . then $(<,\leq)$ is a Lattice. Conversely let $(<,\leq)$ be a Lattice and H is a subset of L.

A subset of L

Case: If $H = \{a\}$ then $VH = \land H$.

If $H = \{a,b,c\}$ we show that VH& $\wedge H$ exists

Let $d = Sup \{a,b\}$ and $e = sup \{d,c\}$

Then $d \ge d \ge b$ and e > d, $e \ge c$.

 $e \ge a,b,c$ and Hence 'e' is the upper bound of $\{a,b,c\}$

Let 'f' be any upper bound of {a,b,c} then

 $f \ge a$, $f \ge a$, $f \ge b$, $f \ge c$

 \Rightarrow f \ge sup {a,b} and f \ge d, f \ge c.

 \Rightarrow f \ge su,p {d,c} and hence f \ge e.

so that sup $\{a,b,c\} = (avb)vc$.

Similarly Inf {a,b,c} exists.

Denote sup $\{a,b\}=a\lor b$ and Inf $\{a,b\}=a\land b$.

Where v and \wedge are two binary Operations.

on L satisfy the following Laws.

1. **Commutative**: For $a,b \in <$.

 $a \lor b + \sup \{a,b\} = \sup \{b,a\} = b \lor a$.

2. Associative: For a,b,c $\in <$, (avb) vc= av (bvc)

Now (avb) $vc = Sup\{avb,c\}$

=Sup $\{a, b \lor c\}$

 $= Sup \{a,b,c\} (Claim)$

 $a \lor (b \lor C) = Sup \{a, b \lor c\}$

= Sup {a, b, c} (claim)

Let $d= Sup \{a,b\}$, $e= sup \{d,c\}$

then $d \ge a$, $d \ge b$, $e \ge d$, $e \ge c$.

 $e \ge a,b,c$ 'e' is an U.B. of $\{a,b,c\}$.

Let 'f' be any U.B of {a,b,c}

 $f \ge a,b,c \implies f \ge e$.

Hence 'e' is Sup {a,b,c}

Similarly $a \lor (bVC) = Sup \{a,b,c\}$

Now we Claim that

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 25, No. 1S (2024)

http://www.veterinaria.org

Article Received: Revised: Accepted:

 $a, \lor a_2 \lor \lor an-1, \lor an = Sup \{a_1, Sup\{a_2, a_3, ..., an-1\} \}$

It n=1 then $a_{1}=$ Sup $\{a_1\}$ Hence it in Clear.

By using Mathematical introduction. Let it be true for n-1.

Sup $\{a1, a2...an_{-1}, an\} = (a_1 \lor a_2 \lor --- \lor an-1) \lor an$

 $= Sup \{a_1, Sup \{a_2-an-1\}.$

Hence is true for any finite elements

 $\{a_1,a_2a...a_n\}$ of L and hence

 $a_1 \vee a_2 \vee ... \vee a_1$ is uniquely determined.

Theorem 2: Let (L, \leq) be a Lattice, where ' \leq ' is a binary operation an \leq satisfying Laws and transitive Laws and Sup $\{a,b\}$, Inf $\{a,b\}$ exists for all a,b, in L:

Define two "binary operations \vee and \wedge in < in $(<,\vee,\wedge)$

by $a \lor b = Sup \{ a,b \}$ and $.a \land b = inf \{ a,b \}$ then $(<, \land, \land)$ is a Lattice.

Theorem 3: Let $\langle L, \vee, \wedge \rangle$ be a Lattice, where \vee and \wedge are binary Operations on L, with the $a \vee b = \sup \{a,b\}$ and $a \wedge b = \inf \{a,b\}$.

Define a relation ' \leq ' on \leq by \leq b' if $a \land b=a$ then $\leq L, \leq \geq$ is a Lattice.

Proof: 1. Relative: $a \le since a \land a = Inf \{a,a\}$

2. Antisysmetic: Let $a \le b$ and $b \le a$ for any $a,b \in L$ then

and for $b \le a$ and $a \land b = Inf \{a,b\} = \in a$

Inf $\{b,a\}=b \land a=b$

Hence a=b ' \wedge ' is commutative and Inf {a,b}=Inf {b,a}.

3. Transitive: Let $a \le b$ and $b \le c$.

Then we have to show that $a \le c$.

 $a \le b$, Inf $\{a,b\}$ -a

 $b \le c$ and Inf $\{b,c\} = b \land c$.

 $a = a \land b = a \land (b \land c) = (a \land b) \land c = a \land c.$

Hence a \leq c.Hence \leq is Transitive.

Now we Claim that '≤' is a partial orders on <.

Now we show that Sup $\{a,b\}=a\lor b$, Inf $\{a,b\}=a\land b$.

Since $a \land (a \lor b) = a \Longrightarrow a \le a \lor b$

 $b \land (a \lor b) = b \Longrightarrow b \lor b$.

hence $a \lor b$ is an O.B. of $\{a,b\}$

Let 'd' be an O.B.of {a,b}

 $d \ge a$, $d \ge b \implies d \ge a \lor b$

hence $a \lor b = \sup\{a,b\}$.

similarly $a \lor (a \land b) = a \Rightarrow a \land b \le a$ and $b \land (a \land b) \Rightarrow a \land b \le b$.

hence $a \land b$ is Lower bound of $\{a,b\}$.

Let 'e' be any Lower bound of $\{a,b\}$ then $e \le a$, $e \le b \Rightarrow e \le a \land b$.

Hence $a \land b = Inf [a \land b = Inf \{a,b\}]$ Imply that (L, \leq) is Lattice.

Theorem 4: Let (L, \vee, \wedge) be a Lattice, where \vee and \wedge are two binary operations on L with $a \vee b = \sup \{a, b\}$ and Inf $\{a, b\} = a \wedge b$.

Define ' \leq ' on \leq by a \leq b if a \wedge b=a. Then $\leq\leq,\leq\geq$ is a Lattice and the Ordering ' \leq ' is unique.

Proof: If '≤' be any binary operation defined on <,defined by a≤,b if a∨b=b

Claim: $\leq 1 = \leq$

let $(a,b) \in \leq iff \ a \leq b \ if \ a \vee b = b$

if $a \le b$ if $(a,b) \square \le$.

Imply that \leq , \leq , \leq \rightarrow \otimes

Let $(a,b) \in \leq$, iff $a \leq_1 b$ iff Inf $\{a,b\}=a$

Iff $a \le b$ iff $(a,b) \in \le imply$ that

 $\leq = \leq_1 \leq_1 \leq \leq \rightarrow \otimes \otimes$

For an \oplus and $\otimes \otimes \leq = \leq$.it is also observed that $a\nabla b = a \lor b$ and $a \land b = a \land b$.

Now we claim that \leq is a partial on dew on \leq

Now we s.t. $\sup \{a,b\} = ayb$

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 25, No. 1S (2024)

http://www.veterinaria.org

Article Received: Revised: Accepted:

Inf $\{a,b\} = a \land b$.

Since $a \land (a \lor b) = a \Longrightarrow a \le a \lor b$,

 $b \land (a \lor b) = b \Longrightarrow b \le a \lor b$

hence $a \lor b$ is an O.B. of $\{a,b\}$

Let 'd' be an U.B.of {a,b}

 $d \ge a, d \ge b \Longrightarrow d \ge a \lor b$

hence $a \lor b = \sup \{a,b\}, a \land b \le a$.

similarly a \vee (a \wedge b)=a \Rightarrow

and $b\lor(a^b)=b\Rightarrow a\land b\leq b$.

hence $a \land b$ is Lower bound of [a,b]

let 'e'be any lower bound of {a,b}

then $e \le a$, $e \le b \implies e \le a \land b$.

hence $a \land b = Inf \{a,b\}$ imply that (\leq, \leq) is a Lattice.

Theorem 5: Let $(<,\lor,\land)$ be a Lattice, where \lor and \land are two binary operations on L with $a\lor b=\sup\{a,b\}$ and $a\land b=\inf\{a,b\}$.

Define: < on \le by a \le b if a \land b =a then (<, \le) is a Lattice

And the ordering \leq is Unique.

Proof: If \leq_1 be any binary operation on < defined by $a \leq_1 b$ iff $a \vee b = b$

Claim: $\leq_1 = \leq_1$

Let $(a,b) \in \leq \text{if } a \leq b \text{ if } a \vee b = b$

If $a \le b$ if (a,b) if $(a,b) \square \le$

Imply that $\leq \leq \leq \rightarrow$

Let $(a,b) \in \leq$, if $a \leq b$ if

Inf $\{a,b\}=a$

Inf a \leq b if $(a,b) \in \leq$

Imply that $\leq, \leq \leq \rightarrow \otimes \otimes$

F or an \oplus and $\otimes \otimes \leq =\leq_1$

It in also Observed that

 $a\nabla v=a\lor b$ and $a\land b=a\land b$

The following is an Example of a p.o. set in which supreme of the set consisting of any two elements exists and infimum doesn't exists.

Example 1: Let $x = \text{Infinite set. P= Set of all non-employ is subsets of } x \text{ Define } \le \text{as 'c' (i.e) for } A,B \square P, A \le B \text{ IF } A \le B \text{ iff } A \le B$

For A,B $\Box p \Rightarrow A \neq Q$, $B \neq Q \Rightarrow AUB \neq \emptyset$

So that AUB∈P

Now we claim that A∨B=AUB

Since $A \le AUB$ and $B \le AUB \Rightarrow AUB$ is an U.B OF $\{A,B\}$

Let 'd'be any U.B.of $\{A,B\}$ Then $D \ge A,D \ge B$ so that AUB = AVB

Let A,B be any two non-empty subsets of x such that $A \cap B = \emptyset$

Let' \square ' p be any lower bound of {A,B}

Then $P \le A$, $P \le B \Rightarrow P \le A \cap B \Rightarrow P = \emptyset$

Hence A∩B doesn't exist.

The following is an example of a p.o. set in which Infinimum of the set consisting of any two elements exists and supreme doesn't exists.

Example 2: Set x = infinite set and P = the set of all subsets of X.

Let \leq be a partial ordering on 'P' now we S.T. A \wedge B and AUB doesn't exist for any A,B \square P.

Since $A \cap B \le A$, $A \cap B \le B \Rightarrow A \cap B$ is a lower bound of $\{A,B\}$

Let A,B beany two subsets of 'X' such that

AUB=x

Let $c \in p$ be any U.B. OF $\{A,B\}$

⇒AUB≤C.

Let $A \le c, B \le C \Longrightarrow AUB \le C$ so that $X \le C$

Hence X=C. which is a contradiction as $C \in P$.

So that AUB doesn't exists in P.

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 25, No. 1S (2024)

http://www.veterinaria.org

Article Received: Revised: Accepted:

Def 2: covering of two elements in a P.O. se let $(p.\le)$ be a p.o. set and let $a,b \in p$ than we say that 'a'covers 'b' b is covered by a if 1. $b \le a$ 2. There exists $x \in p$.

such that $b \le x \le a$ we write this as $b \le a$.

Theorem 6 : Let (P, \leq) be a finite P.O. set and set $a, b \square p$ then $a \leq b$ if a = b

There exists a finite sequence $\{x_0=a, x_{n-1}=b \text{ and } x_i \underline{\hspace{1cm}} \le x_{i+1} \text{ for } 0 \le i \le n-1 \}$

Proof: Let (p, \le) be a finite p.o. set and let $a, b \in p$. If the exists a finite sequence $a = x_0 \le x_1 \le --- \le x_{n-1} = b$, then $a \le b$.

Let (p, \leq) be a P.O. set with $a \leq b \nabla a, b \in p$.

If a=b then it is clear.

If a \leq b: then we have to construct a since sequence $\{a=x_0,x_1-\cdots-x_{n-1}=b\}$

Let 'H' be any subset of 'P' which in contains non-elements say $\{x_0, x_1 - \cdots - x_{m-1}\}$

With $x_0 = a$, as least element and $x_{n-a1} = b$ as greatest element $a = x_0 \le x_1 \le \cdots \le x_{n-1}$

Of $x_i \neq x_i + 1$, $x \in p$, $x_i \leq x \leq x_i + 1$

Then HU $\{x\}$ contains +1 elements which is a contradiction as H contains m elements and hence x_i ----- $\le x_i$ +1.

References:

- 1. General Lattice Theory- Gratzer
- 2. Garrett Birlchoff- Lattice Theory-AMS Colloquium Publications Vol. 25, ISBN-978-0821810255
- 3. A Course in Universal Algebra, Springer Verlog, ISBN 3-540-90578-2