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1. ABSTRACT 

Towards this end, we make use of the Semantic Segmentation of Underwater Imagery (SUIM) dataset, which consists of 

over 1.5k densely annotated photos from eight different item categories that have ground-truth examples. Vertebrate fish, 

invertebrate reefs, aquatic plants, robots, human divers (like me!), and even the seafloor are among the more than 2,000 

categories. This dataset reminds us of organized synthesis by gathering data from multiple ocean expeditions and 

collaborative experiments with both humans (unmanned)and robots. The same authors' team published a more current 

work that included a thorough performance benchmarking using cutting-edge global representations that are easily 

downloadable as open-source code. When it comes to underwater Inspection, Maintenance, and Repair (IMR) duties, the 

assessed methods facilitate the use of Autonomous Underwater Vehicles (AUVs) for autonomous interventions. A 

selection of test objects was made that is indicative of the types of applications that use IMR and whose shapes are usually 

known in advance. As a result, in realistic settings, CAD models produce virtual representations of these things when 

noise is added, and resolution is decreased. We validated our approach through extensive testing on both simulated scans 

and real data obtained using an AUV combined with an in-house rapid laser scanning sensor. Additionally, testing was 

done underwater in areas where shifting terrain caused by an unstable bed may have altered the contour of items being 

followed. To show how it broadens the scope, the research goes deeper into evaluating the performance of cutting-edge 

semantic segmentation algorithms using recognized measures. Finally, we present a fully convolutional encoder-decoder 

model which is tailored for competitive performance and computational efficiency. The model achieved 88% accuracy 

which is very high as far as underwater image segmentation goes. This study shows how the model could be put to 

practical use in various tasks from visual serving, saliency prediction and complex scene understanding. Importantly, the 

ESRGAN utilization improves images quality that enriches the soil on which our model succeeds. It lays a strong 

foundation for forthcoming research in the field of underwater robot vision through formulation, modeling, and 

introduction to benchmark dataset. 

 

2. INTRODUCTION 

Over the past few years, a plethora of techniques for object detection and recognition have emerged in the literature. The 

increasing requirement for autonomous systems capable of interacting with chaotic, ill-organized, and poorly structured 

real-world scenarios has motivated this development effort. Over the past ten years, there has been a significant 

advancement in object identification for mobile robots. Robotic kitchen environments represent an application situation 

where a promising level of performance has been attained. Using color and depth photographic equipment, robots can 

recognize common objects like bowls, plates, and cups so they can locate and automatically pick them up. The primary 

goal of NVIDIA's recently founded artificial intelligence robotics research lab is to teach a robotic arm how to recognize 

various utensils and navigate an IKEA kitchen. Using stereo vision systems for object recognition and grasping, robots 

tried to precisely identify portions of the item from images and determine the appropriate grabbing areas. A plethora of 

other uses have been developed for mobile robot recognition in interior contexts. These include advanced driver-assisted 

systems, industrial and farming applications, and home support for the elderly or persons with disabilities. The two 

primary application scenarios—automotive autonomy and interior service robotics—are somewhat to blame for the surge 

in effort on object detection and recognition. In both circumstances, humans work alongside robots, whose activities may 

pose a threat to human safety. In this regard, there has been a push to make the recognition process more robust and 

quicker. Many complementary sensory modalities, such as color cameras, laser scanners, Light Detection and Ranging 

(LIDAR), depth sensors based on texture projection, and more, can be applied to improve the endurance of land robots. 

However, because of payload restrictions and environmental factors that are unfavorable to these kinds of sensors, in 

certain application settings, such underwater robots, the use of complementing sensors may become extremely limited or 

impractical. When it comes to sensing in general and object perception in particular, the atmosphere of water is among 

the most difficult. Owing to the rapid attenuation and scattering of light and other electromagnetic waves, optical sensing 

is limited to object detection and recognition at very close ranges, typically a few meters. Much longer sensing distances 

are possible with acoustic propagation, but the resulting coarse-resolution and noisy object representations make it 

impossible for autonomous object grabbing to precisely identify and locate objects. Compared to its above-water cousin, 

comparatively fewer underwater object identification applications were documented. These include the recognition of 

various geometric shapes, such as cubes and cylinders, pipeline tracking and identification based on acoustic imaging, 

cable identification, and pipeline inspections in seabed survey activities using acoustic imaging cameras. In order to be 
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able to grip and manipulate such items in the future, we are involved in investigating techniques that are appropriate for 

underwater object recognition in this work. Among the many long-term possible application scenarios are the following:  

• The oil and gas industries are frequently responsible for the inspection, maintenance, and repair of offshore facilities.  

• Finding and classifying marine species in order to learn more about their natural surroundings. 

• The secure and safe examination of potentially harmful, polluting, and inaccessible aquatic resources, including the 

lookout for objects that have been created.  

• Avoiding submerged collisions by employing systems to find and identify an alternative obstacle, as in the early 

examination of accident scenes.  

 

3. RELATED WORK 

Machine learning techniques have long been used for applications related to underwater recognition and detection. 

Traditional methods in this field heavily relied on manually designed features for the detection of underwater objects, 

which included characteristics like shape, color, and texture. In order to distinguish between different underwater coral 

scales, the authors used a combination of texture and color data in addition to Support Vector Machines (SVMs). Chuang 

et al. used texture features retrieved via the phase Fourier transform for fish detection, On the other hand, Kim and 

colleagues introduced a technique that utilizes color-based image segmentation and metatemplate object selection. In 

certain cases, algorithms even employed more complex features, like the Scale Invariant Feature Transform (SIFT) and 

the Histogram of Oriented Gradients (HOG). For an extensive span of time, these approaches were regarded as the most 

accomplished in the field of underwater object detection. 

However, the applicability of these hand-crafted features had limitations. Firstly, their task-specific design limited their 

ability to generalize; characteristics designed for low-light scenes might not be appropriate for well-lit underwater scenes 

or situations where the objects to be recognized significantly alter. Second, as Villon et al. showed when they utilized 

HOG features with SVM for fish classification, performing less well than end-to-end deep learning frameworks due to 

the fragmented nature of feature extraction and classification. Proposing and validating useful handcrafted features would 

also require a high level of competence. 

On the other hand, features from big datasets can be separately extracted using supervised deep learning algorithms. Deep 

learning is a specialized branch of machine learning that analyzes data using layered structures modeled after biological 

neural networks. It needs a large amount of training data in order to extract meaningful and discriminative features with 

the least amount of human assistance. Deep learning architectures easily extract characteristics from input data, in contrast 

to typical machine learning models that are task-specific and frequently require human tweaks. In a variety of computer 

vision applications, such as object identification, object tracking, image segmentation, and image classification, deep 

learning networks have demonstrated outstanding performance. Deep learning has been used extensively in underwater 

item detection. Choi employed convolutional neural networks (CNNs) to classify fish species, while Villon et al. used 

fast-RCNN framework, Faster-RCNN to improve fish detection speed, and a deep learning model to identify coral reef 

fishes. Yang and colleagues met the real-time detection criteria by using the YOLOv3 framework for underwater object 

detection. There are also issues with deep learning-based detection algorithms even with their advantages over 

conventional machine learning models. Noisy data and class imbalance can cause deep learning models to have trouble 

identifying small objects, which increases the number of false positives and false negatives. Therefore, more effort is 

needed to address these challenging issues in deep learning-based underwater object detection. 

 

4. SEMANTIC SEGMENTATION 
One of the most difficult computer vision tasks is semantic segmentation for underwater item detection, which entails 

accurately classifying and defining different objects and areas inside underwater imagery. Underwater robotics, 

environmental monitoring, marine research, and ocean exploration are just a few of the fields in which it finds extensive 

use. Understanding the intricate underwater environment is crucial. 

 

In the context of underwater object detection, semantic segmentation attempts to partition an input underwater picture 

into distinct semantic regions, each of which is labeled with an item category. Semantic segmentation gives each pixel a 

meaningful label, allowing for a pixel-by-pixel examination of the underwater environment Object detection, on the other 

hand, focuses on locating and recognizing particular things inside an image. Deep learning methodologies are the state-

of-the-art for accomplishing semantic segmentation for underwater object detection. These approaches are based on 

Convolutional Neural Networks (CNNs), which can automatically extract hierarchical characteristics from photos.  

For this purpose, Fully Convolutional Networks (FCNs) are often used because They offer end-to-end learning and are 

specifically designed for dense pixel-wise predictions. The first step in the semantic segmentation process is gathering a 

sizable and varied dataset of underwater photos. Then, ground-truth labels corresponding to the several item categories—

fish, corals, rocks, sand, and other marine animals or structures—are manually added to each image at the pixel level.  

The annotated data is fed into the deep learning model during training so that it may learn to recognize pertinent 

characteristics that define each item category. With a focus on minimizing the pixel-wise classification loss, the model 

guarantees precise predictions for the semantic label of every pixel. 
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The trained model is used on fresh, unexplored underwater photos during the inference stage. After processing the input 

image, the model produces a pixel-by-pixel probability map, in which each pixel is linked to the probability that it belongs 

to a particular object category. To get the final segmentation mask, a thresholding step is frequently used, in which the 

label of the most likely item category is allocated to each pixel.  

 

However, there are a number of difficulties with semantic segmentation due to the complexity of underwater photography. 

Absorption, scattering, and color attenuation can cause underwater photographs to deteriorate, resulting in decreased 

visibility and image quality. Furthermore, distinct underwater phenomena like noise and backscatter might make it more 

difficult to detect objects accurately.  

 

5. THE SUIM DATASET 

The SUIM dataset contains a comprehensive and diverse set of objects that are essential for the semantic analysis of 

underwater images. Background waterbody (B.W), human divers (H.D), aquatic plants/flora (P.F), wrecks/ruins (W.R), 

robots and instruments (R.O), reefs and other invertebrates (R.I), fish and other vertebrates (F.V), and seafloor and rocks 

(S.R) are the categories that are visually represented using a 3-bit binary RGB color coding scheme. Table 1 thoughtfully 

outlines this scheme. 

 

 
Table 1: Object Categories and Associated Color Codes in the Suim Dataset. 

 

The SUIM dataset includes 1,525 RGB images in total for training and validation. Additionally, a freely supplied set of 

110 test photos is included to help with the benchmark assessment of semantic segmentation models. The resolutions of 

these pictures vary widely; some of the measurements are 1906 × 1080, 1280 × 720, 640 × 480, and 256 × 256. These 

photos were carefully chosen from a large collection that was amassed during underwater scientific expeditions and 

cooperative experiments incorporating humans and robots in a variety of underwater settings. 

 

Moreover, to introduce a wide range of the natural underwater scenes and experimental configurations that are suitable 

for human-robot cooperation, we judiciously incorporated a smaller subset of images sourced from established Extensive 

datasets, particularly EUVP, USR 248, and UFO 120, were drawn upon. These datasets contributed to the variety of object 

categories, their associations, and the subtleties in RGB channel that intensify values within the SUIM dataset and are 

vividly illustrated in the captivating visual representation featured in Figure 1. 

 

 
Figure 1: SUIM Dataset's Object Category Statistics. 
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The SUIM dataset stands as a testament to the meticulous work of seven human annotators who dedicated themselves to 

the intricate task of pixel-level annotations. Figure 2, showcasing these annotations alongside sample images, 

unequivocally showcases the dataset's exceptional quality and precision. 

The paramount objective of this annotation endeavor was to establish consistent object classification throughout the 

dataset, particularly when faced with potentially confounding distinctions like those between plants/reefs and 

vertebrates/invertebrates. This stringent approach serves as a guarantee of the dataset's unwavering reliability and its 

broad applicability in the realms of computer vision and image analysis. 

In the pursuit of this precision, we diligently adhered to the guidelines delineated in references. The standards were of 

great importance in guaranteeing the precision and consistency of object categorization in the dataset, hence enhancing 

its scholarly and practical significance. 

 

 
Figure 2: Sample Pictures from the SUIM Dataset with Associated Pixel Annotations. 

 

6. PRE-PROCESSING 

Color attenuation, scattering effects, and low contrast can occur in images taken in different or unequal lighting 

circumstances, which can result in a loss of information value. To address this problem and retain lost information, 

Schettini and Corchs presented an overview of earlier research on underwater picture augmentation. Of the different 

dimensions of degradation, classification performance is highly impacted by contrast loss. We have included several pre-

processing sub-steps as follows to guarantee consistent image quality and to improve contrast: 

 

A. Image Super-Resolution using ESRGAN. 

To improve the resolution and quality of the low-resolution photographs, image super-resolution is an essential 

preprocessing step in underwater imaging. There are many obstacles in underwater photography that lead to low-

resolution and low-quality photos. Allow me to present Enhanced Super-Resolution Generative Adversarial Networks, 

also known as ESRGAN, a cutting-edge deep learning technique tailored for super-resolution photos. Its operation is 

based on a Generative Adversarial Network, or GAN, which is made up of a discriminator network that distinguishes 

between high-resolution images that are generated and ground truth images. The generator network produces high-

resolution images. Leveraging ESRGAN for underwater image super resolution begins with the collection of a substantial 

dataset featuring high-quality underwater images, which serves as the basis for model training. The ESRGAN model 

learns the intricate mapping from low-resolution to high-resolution underwater images using this dataset. It's significant 

that it considers the particularities of underwater photography, such as difficulties with light scattering and blur caused 

by absorption. By doing so, it produces visually pleasing and informative high-resolution images that are well-suited for 

underwater applications. After training, the ESRGAN model can be used to improve the resolution of fresh underwater 

photos, which greatly enhances a range of underwater applications, especially those that depend on object recognition 

and categorization. For a visual representation of the ESRGAN architecture, please refer to Figure 3. 
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Figure 3: Better Super-Resolution Generative Adversarial Network Architecture (ERSGAN). 

 

 
Figure 4: The following is the design of the suggested end-to-end model for semantic segmentation of underwater 

images. The first four blocks of a pre-trained VGG 16 model are used by the model to encrypt. Three mirrored 

decoder blocks and a deconvolution layer are then used to decode and produce the semantic segmentation map. 

 

7. METHODOLOGY 

A. Network Architecture 

Our primary objective is to enhance the functionality of our model, which employs a neural network with twelve encoding 

layers that has already been trained. A graphic depiction of the architectural features is shown in Figure 4. Our work's 

primary goal is to apply this paradigm to produce better outcomes. 

 

The approach we have outlined is depicted in Figure 5 and has been developed through a comprehensive review of 

relevant literature in addition to a detailed analysis of current methods and models. This extensive examination of the 

literature included a comparative study of various models related to picture segmentation, image contrast enhancement, 

and prominent object detection. To accomplish our study goals, the suggested methodology consists of several thoughtful 

steps: 

 

7.1. First Preprocessing for Super-Resolution Underwater Images: The first phase of our methodology focuses on 

enhancing the resolution of underwater images, which often suffer from low quality and resolution. In this regard, we 
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explored several super-resolution models, conducting a thorough evaluation to identify the most suitable approach for our 

specific needs. Our extensive evaluation led us to select the Enhanced Super-Resolution Generative Adversarial Network 

(ESRGAN) as the optimal solution for our super-resolution process. 

 

7.2. Model Implementation with Convolutional Encoder-Decoder Architecture: In the next step, we proceeded with 

the implementation of our model. Our model design is based on a fully convolutional encoder-decoder architecture with 

skip relationships between mirrored aggregate layers. This architecture is integral to our approach as it plays a crucial 

role in the extraction and reconstruction of high-resolution information from low-resolution input. 

 

7.3. Comparative Assessment of Proposed Solution: We performed a comparative analysis with other models that 

handle related problems in order to verify the effectiveness of our suggested methodology. This step allows us to 

quantitatively measure the performance and effectiveness of our approach to other solutions available in the field. 

It is important to emphasize that the efficacy of our suggested methodology is based on a careful fusion of preprocessing 

steps, architectural design decisions, and the particular elements of our model. These components are carefully combined 

to make sure that our model performs well and produces results that are consistent with the main goal of our study. Our 

goal is to provide a strong and effective solution for underwater image enhancement and associated applications by giving 

careful consideration to these factors. 

 

7.4. Microsoft COCO: Another large-scale dataset, Common Objects in Context, contains over 330 thousand annotated 

photos. It has fewer categories but more instances of the same classes than ImageNet. 2.5 million occurrences in those 

images have labels. In a situation where they might be located, the dataset attempts to provide some photos with partially 

occluded objects. Three other issues in scene understanding research are also addressed: non-canonical view detection 

(most datasets exhibit the items in clear, unobstructed view) and accurate 2D localization, where the labels are a more or 

less precise segmentation mask. 

 

7.5. BENTHOZ-2015: This dataset is comprised of thousands of expertly annotated images of the seafloor off the coast 

of Australia. The images were collected as part of the Australian government's marine research program, the Integrated 

Marine Observing System (IMOS). Researchers studying benthic habitats and the organisms that inhabit them will find 

this dataset interesting Because it is georeferenced (every image has a GPS coordinate linked with it) and incorporates 

additional sensor data, such depth, height, temperature, and salinity, it may also be used to construct 3D maps and develop 

or test the Visual SLAM algorithm. The Internet 2 provides free access to the dataset, and it comes with Squidge, an 

annotation tool that is helpful for handling, examining, and annotating photos, videos, and large-scale mosaics. 

 

 
Figure 5: Block Diagram for Detecting Underwater Images and Objects. 
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Figure 6: Annotated image sample from the BENTHOZ-2015 collection. 

 

7.6. Marine Underwater Environment Database (MUED): A collection of 8600 photos of 430 distinct underwater 

objects, each having one or more items in a complex setting with variations in object posture, turbidity, and illumination, 

is provided by Jian et al. (2019). After evaluating salient-object recognition methods solely on this dataset, the authors 

concluded that a great deal of state-of-the-art algorithms do not adapt well to complex underwater environments. 

Unfortunately, because this dataset lacks images of items out of water, it cannot be utilized to compare how well two 

environments perform in an object classification job. 

 

8. PROPOSED DATASET: HEIMDACA 

This thesis aims to compare the performance differences between the same image classification method applied in the 

two contexts (under and above water) with respect to the same objects or classes. Instead of doing large-scale image 

classification, since a lot of work has already been done in this field. Since no dataset could be located for this use, it was 

necessary to take pictures of many items under two distinct circumstances: 

 

The custom dataset HEIMDACA 3 contains images of eight items (classes) in two different settings: underwater (aquatic) 

and above the water's surface (aerial). The dataset consists of the following classes: Figueiredo et al. (2016) pioneered 

the artificial marker mark for UAV navigation and localization. Other items are weight, a round epoxy object with a ring 

on top, used as ballast in small water vehicles, float, a floater used in pool lane separators, and lead, a circular lead disk. 

Hybrid Environment Image Dataset for Applications in Classification. 

 

 
Figure 7: Instances of items gathered within the aerial domain. 
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This dataset was gathered in two locations: An underwater tank at the Department of Electrical Engineering and 

Computers at the University of Porto's Faculty of Engineering, and an aerial picture collection facility run by CRAS. All 

photos were taken using an L-shaped structure, with the camera-object distance preset for each set from a top-down 

viewpoint. 

 

There were two sets of photos captured in each environment:  

1. Aerial: Without backdrop and with backdrop (Fig.7), photos captured using a green cardboard piece that helps 

segmentation masks be created.  

2. Aquatic: Photographs were taken in an area of the tank where the bottom was mostly intact, giving a clear background. 

Rough Background: images captured in the more texturally rich part of the tank. 

  

 
Figure 8: Dataset Division. 

 

 
Figure 9: Underwater image capture setup. 
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With the exception of a plastic enclosure that made the camera waterproof so it could be used safely in an underwater 

setting, an Allied Vision 4 MAKO G-125C camera was utilized to capture both aerial and aquatic datasets. The flat-pane 

window in the enclosure may have caused distortion because of the water-glass interaction, however following 

examination of the collected frames, no appreciable deterioration in distortion was discovered. 

 

Pictures were taken in RGB8Packed pixel format, with a resolution of 1292 by 964 pixels. The camera's built-in algorithm 

was used to automatically alter the exposure, gain, and white balance settings when it was used in the chosen setting and 

there were no objects in its field of vision. The necessary values were kept constant for each set of circumstances, after 

they stabilized, and Table provides a summary of them. 

 
                                                                   Aerial                       Aquatic 

                                     W/Background           W/o Background          Clear                            Rough 
Distance to object 0.5 m 1.0 m 0.9 m 1.8m 

Exposure 26.5 ms 18.0 ms 28.7 ms 25.5 ms 

Gain 13 dB 9 dB 0 dB 0 dB 

White Balance Red: 1.60 Red: 1.60 Red: 3.0 Red: 3.0 

White Balance Blue: 2.70 Blue: 2.70 Blue: 3.0 Blue: 3.0 

 

Ten frames were chosen for each object in the aerial and marine photos after many images were taken. The selected 

photographs attempted to present the thing from several angles. Then, using Fiji, a program that enables speedy creation 

and testing of image processing techniques, black and white segmentation masks were created. Because of their consistent 

background, color segmentation was used to construct the masks for the aerial photos. The image was first segmented, 

and after that, morphological dilation was used to create a mask that included the whole item. Masks for the underwater 

photos were made by hand with the "Polygonal Select" tool. 

 

These ten selected frames were used to create 450 images per object by random combinations of rotations, scale changes 

from 50% to 100% of the original image size, and horizontal and vertical mirroring. By using this method, it was possible 

to prevent overfitting and a lack of model generalization while also adding diversity to the training sets and speeding up 

the data collection process. To simulate variations in the camera viewpoint and assess how resilient the models are to 

such variation, perspective transformation was applied to images of aquatic subjects. 

 

9. Conclusion 
The material in this section included a specifically produced dataset for the thesis. Instead of classifying a huge number 

of items in two different settings on an eight-item set, its goal is to evaluate and quantify the influence of the undersea 

environment on the performance of picture classification algorithms. To add more variation to the data, data augmentation 

was applied to a portion of the photos. 

 

Final Thoughts Computer vision has been used more and more for fish detection, monitoring, and management as image 

technologies and artificial intelligence techniques have advanced (Figure 3). Numerous studies covering a broad spectrum 

of applications can be found in the literature. Good results published in the literature can give the impression that the 

"mission accomplished" is achieved, but in reality, most studies have serious constraints that make it difficult to apply the 

suggested procedures in practice. These restrictions are typically related to the difficulty of gathering high-quality imaging 

data on fish, particularly when using an underwater setup. Although overcoming the obstacles covered in this review will 

take time and effort, doing so is necessary to make possible technology that can enhance the management and exploration 

of fish resources. 

Knowing the issues that require suitable answers and the actual maturity of techniques and related technologies is essential 

for scientists, researchers, and entrepreneurs wanting to investigate the possible market to prevent mediocre products and 

services. Many technology-based businesses and startups have failed in other economic sectors where computer vision 

and artificial intelligence have been studied for longer because of the entry of immature technologies into the market. 

Beyond the financial damage brought about by those failures, subpar products frequently tarnish prospective buyers' 

impressions of a certain technology, which makes it harder for future competitors to succeed—even if their offerings are 

sound. Hopefully, the fish industry can steer clear of this predicament. 

It is difficult to forecast the direction of research, especially given how swiftly and dynamically computer vision and 

artificial intelligence have developed in the recent past. On the other hand, it appears more likely that deep learning 

techniques and the application of data fusion principles will continue to gain popularity in combining the information 

generated by different data sources. The tighter the gap is between academic findings and practical needs, the more 

representative datasets that are collected and made accessible. 
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