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ABSTRACT: Embodiments disclose a method and a non-invasive glucometer system thereof, for detecting diabetes 

from breath sample of an individual, comprising: an air storage for collecting breath sample of an individual/user, when 

a user blows into it; a user terminal having a user interface (UI) for entering demographic data and body vital information 

of the user; a volatile organic compounds (VOC) analyzer, operably coupled to the air storage, to infuse the breath sample 

collected into the VOC analyzer, said VOC analyzer comprising a sensor array chamber having a plurality of embedded 

electrochemical sensors, said VOC analyzer is configured to: generate corresponding sensor voltages from the plurality of 

embedded sensors, wherein the sensed output voltages correspond to the concentration of VOCs in the breath sample; 

determine volatile organic compounds (VOCs) in the breath sample of the user; and transmit sensed output voltages to a 

processing and controlling unit, in real-time. The processing and controlling unit comprising a microcontroller, said unit 

is configured to: receive and store, demographic data and body vital information of the user, from the user terminal; 

receive and store, the sensed output voltages, from the plurality of embedded sensors; send, the stored combined data set 

relating to demographic data and body vital information of the user, and the sensed output voltages, from the plurality of 

embedded electrochemical sensors, on receiving a breath sample of the user, to train a machine learning (ML) model. The 

user terminal is configured to receive a diabetes prediction report for a test breath sample, from the trained ML model. 

 

Keywords Machine Learning, Diabetes Healthcare, Artificial Intelligence, Clinical Data, Non-invasive glucometer, 

Diabetes detection, Breath sample, Volatile organic compounds (VOCs), electrochemical sensors, Sensor voltages 

 

INTRODUCTION 

Lately, effortless strategies for recognizing diabetes stand apart on account of their capacity to chip away at tenacious 

comfort and consistence (Priefer et al., 2015; Zhang et al., 2020). Among these, the use of breath assessment has emerged 

as a promising strategy for diagnosing diabetes by recognizing eccentric normal combinations (VOCs) normal for 

metabolic conditions (Davila et al., 2014; Vishinkin and Haick, 2015). The improvement of such an innocuous glucometer 

structure incorporates the joining of various mechanical parts, including sensors and simulated intelligence estimations, 

to exactly research breath tests (Kumar et al., 2021).  

The system usually contains an air storing unit for social occasion breath tests, an erratic regular blends (VOC) analyzer 

with a sensor display chamber, and a taking care of unit for continuous data assessment (Wilson and Baietto, 2011; Chen 

et al., 2022). The VOC analyzer expects an essential part by delivering sensor voltages connecting with the gathering of 

VOCs in the breath, which are then taken care of to predict the likelihood of diabetes (Arasaradnam et al., 2014; Sukul et 

al., 2019). This data, got together with fragment and body vitals information entered through a UI, is used to set up an 

artificial intelligence (ML) model, which can thusly give a diabetes conjecture report considering test tests (Abbasi et al., 

2023).  

This creative method for managing diabetes acknowledgment could generally work on early finding and the board, 

agreeing with the greater example towards tweaked clinical consideration developments (Al Lawati et al., 2017; Wong et 

al., 2020). 

Exemplifications give an effortless glucometer system for distinguishing diabetes from the breath trial of an individual, 

containing: an air storing for social occasion the breath trial of an individual/client, when a client blows into it; a client 

terminal having a UI (UI) for entering fragment data and body vitals information of the client; an erratic normal blends 

(VOC) analyzer, operably coupled to the air storing, to pervade the breath test accumulated into the VOC analyzer, said 

VOC analyzer including a sensor group chamber having a greater part of embedded electrochemical sensors, said VOC 

analyzer is intended to: make looking at sensor voltages from most of introduced sensors, wherein the recognized outcome 

voltages contrast with the centralization of VOCs in the breath test; choose unsteady regular combinations (VOCs) in the 

breath trial of the client; and convey identified yield voltages to a taking care of and controlling unit, consistently; the 

dealing with and controlling unit containing a microcontroller, said unit is organized to: get and store, portion data and 

body vitals information of the client, from the client terminal; get and store, the recognized outcome voltages, from most 
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of embedded sensors; send, the set aside merged educational file interfacing with section data and body vitals information 

of the client, and the distinguished outcome voltages, from most of embedded electrochemical sensors, on getting a breath 

trial of the client, to set up a simulated intelligence (ML) model; wherein the client terminal is intended to get a diabetes 

assumption report for a test breath test, from the pre-arranged ML model. 

 

LITERATURE REVIEW: The examination of easy scientific methodologies, particularly for steady ailments like diabetes, has 

gotten a move on lately. Standard blood glucose checking, while at the same time convincing, is nosy and oftentimes 

abnormal, provoking lessened patient consistence (Martinez et al., 2017). This has goaded assessment into elective 

procedures, with breath examination emerging as a promising strategy in light of its easiness and convenience (Cristescu 

et al., 2013). 

 

2.1. Erratic Normal Combinations (VOCs) and Diabetes 

The connection between VOCs in inhaled out breath and different metabolic conditions, including diabetes, has been 

broadly thought of. VOCs are made as metabolic outcomes and can go about as biomarkers for unequivocal diseases 

(Phillips et al., 1999; Amann et al., 2014). Concerning diabetes, certain VOCs, as CH3)2CO, have been perceived true to 

form characteristics of surprising glucose absorption (Schallschmidt et al., 2016). The combination of CH3)2CO in breath 

has been shown to compare with blood glucose levels, making it a pragmatic competitor for easy glucose noticing (Turner 

et al., 2009). 

 

2.2. Sensor Developments for VOC Area 

The improvement of sensors prepared for recognizing VOCs in breath tests is essential to the advancement of effortless 

glucometers. Various types of sensors, including metal oxide sensors, electrochemical sensors, and nanomaterial-based 

sensors, have been examined for their responsiveness and identity in distinctive VOCs related with diabetes (Wang et al., 

2016; Dey, 2018). For instance, metal oxide sensors have been by and large used due to their high repugnance for 

CH3)2CO, a key biomarker for diabetes (Righettoni et al., 2012). Late types of progress in nanotechnology have moreover 

overhauled sensor execution, enabling the acknowledgment of VOCs at lower obsessions and dealing with the accuracy 

of diabetes finding (Chen et al., 2016). 

 

2.3. Computer based intelligence in Ailment Estimate The compromise of computer based intelligence (ML) estimations 

with VOC disclosure advancements has changed the field of ailment diagnostics (Esteva et al., 2019). ML models can 

separate complex datasets, including VOC profiles, fragment data, and body vitals, to perceive plans and expect disease 

states with high precision (Sakai et al., 2020). In diabetes recognizable proof, ML computations have been used to deal 

with sensor yields and produce judicious models that relate VOC obsessions with the likelihood of diabetes (Ghosh et al., 

2017). Studies have shown that ML-based systems can achieve definite correctnesses commensurate to ordinary 

methodologies, making them a reasonable choice for diabetes screening (Mahesh et al., 2021). 

 

2.4. Troubles and Future Direction Despite the progression in making innocuous glucometers, a couple of troubles remain. 

The variability in VOC centers due to components like eating schedule, environment, and individual assimilation can 

impact the accuracy of breath-based diagnostics (Schmidt et al., 2017). Furthermore, the blend of sensor propels in with 

ML models requires fiery endorsement to ensure constancy across arranged masses (Rodriguez et al., 2022). Future 

investigation is revolved around watching out for these troubles by additional creating sensor propels, refining ML 

estimations, and guiding tremendous degree clinical primers to endorse the reasonability of innocuous glucometer 

structures (Wang et al., 2021). 

A few Paper and studies have tended to harmless strategies for observing medical issue through breath examination. 

Examines a framework for observing ketone levels and utilizing verifiable information to survey wellbeing program 

viability. Be that as it may, it varies from the ongoing methodology, which centers around momentary breath investigation 

for glucose location. 

 

SYSTEM DESIGN AND METHODOLOGY: The proposed non-invasive glucometer comprises an air storage unit, a 

user interface (UI), and a VOC analyzer with a sensor array chamber. When a user blows into the device, the breath 

sample is collected and analyzed by the VOC analyzer, which generates sensor voltages corresponding to the concentration 

of various VOCs in the breath. These voltages are transmitted to a processing unit that integrates this data with 

demographic and body vital information. 

A machine learning model processes the combined data set to predict the user's glucose level. The model is trained on a 

dataset that includes features extracted from sensor voltages and body vitals, allowing it to accurately predict whether a 

user has diabetes based on the breath sample. 

The system uses Metal Oxide Sensors (MOS) to detect gases like VOCs, NH3, H2, CO, and H2S. A capacitive humidity 

sensor and thermistor measure humidity and temperature, ensuring accurate breath sample analysis. The microcontroller 

unit, equipped with WiFi functionality, logs data to the cloud using MQTT protocol, enabling real-time data visualization 

and monitoring through platforms like Grafana. 
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WE GUARANTEE 

1. A painless glucometer framework for identifying diabetes from breath test of an individual, containing: an air 

stockpiling for gathering breath test of an individual/client, when a client blows into it;a client terminal having a UI 

(UI) for entering segment information and body vitals data of the client; an unpredictable natural mixtures (VOC) 

analyzer, operably coupled to the air stockpiling, to imbue the breath test gathered into the VOC analyzer, said VOC 

analyzer including a sensor cluster chamber having a majority of implanted electrochemical sensors, said VOC 

analyzer is designed to: produce comparing sensor voltages from the majority of implanted sensors, wherein the 

detected result voltages compare to the centralization of VOCs in the breath test; decide unstable natural mixtures 

(VOCs) in the breath test of the client; and communicate detected yield voltages to a handling and controlling unit, 

continuously; the handling and controlling unit including a microcontroller, said unit is arranged to: get and store, 

segment information and body vitals data of the client, from the client terminal; get and store, the detected result 

voltages, from the majority of inserted sensors; send, the put away consolidated informational index connecting with 

segment information and body vitals data of the client, and the detected result voltages, from the majority of implanted 

electrochemical sensors, on getting a breath test of the client, to prepare an AI (ML) model; wherein the client terminal 

is arranged to get a diabetes expectation report for a test breath test, from the prepared ML model. 

2. The framework as guaranteed in guarantee 1, wherein the ML model is designed to: work either in preparing stage or 

in testing stage; wherein when the ML model works in preparing stage, the ML is designed to: separate highlights 

from the detected result voltages, from the majority of implanted electrochemical sensors; hypertune the extricated 

boundaries to prepare the ML model; wherein when the ML model works in testing stage, the ML is designed to: get 

another arrangement of joined informational index connecting with segment information and body vitals data of a 

current or another client, and recently detected yield voltages, from the majority of implanted electrochemical sensors, 

on getting another test breath test of the client; yield a diabetes expectation report for the test breath test, from the 

prepared ML model. 

 

EXPERIMENTAL SETUP AND DATA COLLECTION: Participants provided breath samples by filling a balloon 

and submitted body vitals, including age, SpO2, heart rate, and blood pressure, using digital health devices. The breath 

sample was then deflated into the VOC analyzer, which recorded sensor voltages corresponding to VOC concentrations. 

This data, combined with the participants' body vitals, was used as input for the ML model to classify the samples as 

diabetic or non-diabetic. 

 

FIGURES 

Figure 1A-B: Overall system of the non-invasive glucometer. Figure 2: Performance comparison of ML models used. 

Figure 3: Prototype of breath sample collection and analysis arrangement. Figure 4: User interface for entering 

demographic data and body vitals. 

Figure 5: Diabetes prediction report for a test breath sample. 

Figure 6A-B: 3-D CAD design of the non-invasive glucometer system enclosure. 

 

Table I: Various electrochemical sensors and their specific target gas components alongside their sensitivity 
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Table II: Complete list of features considered in the experiments 

Base Feature Feature Used Description 

Curve Magnitude abs(Curve Magnitude) [35] The absolute value of curve magnitude values. 

max(Curve Magnitude) [36] The maximum of curve magnitude values. 

min(Curve Magnitude) [37] The minimum of curve magnitude values. 

mean(CurveMagnitude) [38] 

 

The mean or average of curve magnitude 

values. 

stdDev(Curve Magnitude) 

[39] 

The median curve magnitude values. 

First Derivative [40] max(First Derivative) The maximum of first derivative of signal values. 

min(First Derivative) The minimum of first derivative of signal 

values. 

mean(First Derivative) The mean of first derivative of signal values. 

abs(First Derivative) The absolute value of the first derivative. 

stdDev(First Derivative) The square root of the variance of the first 

derivative. 

Second Derivative [40]  

max(Second Derivative) 

The maximum of second  derivative of  signal 

values. 

min(Second Derivative) The minimum of second derivative of signal 

values. 

mean(Second Derivative) The mean of second derivative of signal values. 

abs(Second Derivative) The absolute value of the second derivative. 

 stdDev(Second Derivative) The square root of the variance of the 

second 

derivative. 

Slope and 

Integral of five intervals 

[41] 

Slope of five intervals The slope of the five intervals of the curve¹. 

 Integral of five intervals The integral of the five intervals of the curve¹. 

Phase M(t0γ)/M(t0) It represents the integral derivative over the 

magnitude values [42]. 

Fast Fourier Transform (fft) 

[43,44] 

phase The phase is calculated based on the fft of 

the 

sensor’s response. 

Power Spectrum The square of the absolute value of fft 

transform. 
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Spectral Entropy It represents the entropy of the power spectrum. 

Wavelet [45] Wavelet Coeffs Coefficients of wavelet transformation of the 

sensor’s response signal. 

Peak [46] height The height of the peak. 

width The width of the peak. 

area The trapezoidal area of the peak. 

Shape skewness [47] The measure of the asymmetry of a distribution, 

where a positive skew indicates a longer tail on 

the right side and a negative skew indicates a 

longer tail on the left side. 

kurtosis [48] The measure of the tailedness of a distribution; 

a 

positive value indicates fatter tails and a negative 

value indicates thinner tails. 

entropy [49] The measure of the disorder or randomness of 

a shape; a higher entropy indicates a more 

disordered or random shape. 

Auto-Regressive (AR) [50] coefficients These represent the relationships between 

past 

and current values of the model. 

Prediction Error The difference between the actual observed value 

and the AR model's predicted value. 

Short-time Fourier 

transform (STFT) [51] 

Dominant Frequency The frequency component that has the 

highest 

magnitude of the signal. 

avg(magnitude(STFTcoeffs 

)) 

The average magnitude of the STFT 

coefficients, 

calculated by taking the mean of the 

magnitudes over all the time frames. 

 Sum(magnitude(STFTcoeff 

s)) 

The sum of the magnitudes of all the STFT 

coefficients. 

energy(STFT) The overall power of the signal in the frequency 

domain. 

centroid(STFTcoeffs) The weighted average of the frequencies in the STFT, where the weights are 

the magnitudes of 

the STFT coefficients. 

bandwidth(STFT) The range of frequencies represented by a single 

STFT coefficient, determined by the window length. 

rolloff(STFT) The frequency at which the magnitude of the STFT coefficients drops to −3dB, 

typically used as a measure of the sharpness of the transition 

between the passband and the stopband. 

 

Table III: Hypertuning parameters used as input to various ML algorithms 

ML Classifiers Parameter name: Parameter values 

Decision Tree criterion: (‘gini’, ‘entropy’, ‘log loss’), splitter: (‘best’, ‘random’), max depth: (2 to 

10, step size of 1), min samples split: (2 to 10, step size of 1), min samples leaf: (1 to 

10, step size of 1), max features: (‘auto’, ‘sqrt’, ‘log2’), max leaf nodes: (None, 10 to 

100, step size of 10), min impurity 

decrease: (0.0 to 1.0, step size of 0.01) 

Support Vector C: (0.1 to 10, step size of 0.1), kernel: (‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, 

‘precomputed’), degree: (3 to 10, step size of 1), gamma: (‘scale’, ‘auto’, 

‘float’) with (0.001 to 1, step size of 0.005) for ‘float’ 

Gradient Boost learning rate: (0.01 to 1, step size of 0.01), n estimators: (5 to 500, step size 

of 5), subsamples: (0.01 to 1, step size of 0.01), criterion: (‘friedman mse’, ‘squared 

error’), min samples split: (2 to 10, step size of 1), max depth: (2 to 

10, step size of 1) 

Random Forest  n estimators: (5 to 500, step size of 5), criterion: (‘gini’, ‘entropy’, ‘log loss’), min 

samples split: (2 to 10, step size of 1), max depth: (2 to 10, step size of 1), max 
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features: (‘sqrt’, ‘log2’), min samples leaf: (1 to 10, step size 

of 1) 

KNeighbors n neighbours: (5 to 100, step size of 5), weights: (‘uniform’, ‘distance’), 

algorithm: (‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’), leaf size: (30 to 100, step size of 3) 

Elastic Net alpha: (0.01 to 1, step size of 0.01), l1 ratio: (0.01 to 1, step size of 0.01), fit 

intercept: (True, False), max iter: (1000 to 5000, step size of 100), selection: (‘cyclic’, 

‘random’) 

Ridge  

alpha: (0.01 to 1, step size of 0.01), solver: (‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse 

cg’, ‘sag’, ‘saga’), fit intercept: (True, False), max iter: (1000 to 5000, step size of 

100) 

Lasso alpha: (0.1 to 10, step size of 0.1), fit intercept: (True, False), copy X: (True, 

 False), max iter: (1000 to 5000, step size of 100), selection: (‘cyclic’, 

‘random’) 

Logistic Regression penalty: (‘l1’, ‘l2’, ‘elasticnet’, None), dual: (True, False), C: (0.1 to 10, step size of 

0.1), fit intercept: (True, False), solver: (‘lbfgs’, ‘liblinear’, ‘newton- cg’, ‘newton-

cholesky’, ‘saga’, ‘sag’), max iter: (1000 to 5000, step size of 

100), multi class: (‘auto’, ‘ovr’, ‘multinomial’) 

XG Boost max depth: (1 to 10, step size of 1), alpha: (0.1 to 10, step size of 0.1), booster: 

(‘gbtree’, ‘gblinear’), eta: (0.01 to 1, step size of 0.01), min child 

weight: (1 to 10, step size of 1) 

Extra Tree criterion: (‘gini’, ‘entropy’, ‘log loss’), splitter: (‘random’, ‘best’), max 

depth: (3 to 99, step size of 2), min samples split: (2 to 10, step size of 1), min samples 

leaf: (1 to 10, step size of 1) 

Ada Boost n estimators: (5 to 500, step size of 5), learning rate: (0.1 to 1, step size of 

0.01) 

Passive 

Aggressive 

C: (0.1 to 10, step size of 0.1), max iter: (1000 to 5000, step size of 100) 

 

Table IV: Features used for developing ML tools 

Feature Description 

Age Age of the user 

Gender Gender of the user, i.e., male, female, or other 

BP User’s max and min BP values 

SPO₂ Oxygen level in blood 

Heart Rate Heart rate of the patient 

Fast Fourier Transform (fft) phase 

Power Spectrum 

Spectral Entropy 

Phase M(ti+1)/ M(ti) dM 

First Derivative max(First Derivative) 

min(First Derivative) 

mean(First Derivative) 

abs(First Derivative) 

stdDev(First Derivative) 

Second Derivative max(Second Derivative) 

min(Second Derivative) 

mean(Second Derivative) 

abs(Second Derivative) 

stdDev(Second Derivative) 

Slope and Integral of five intervals Slope of five intervals¹ 

Integral of five intervals¹ 

 

Table V: Optimal hyper-tuned parameter values for ML algorithms used in the experiment 

ML Classifiers Hyper-tuning Parameter: Optimally Hyper-tuned Value 

Decision Tree criterion: 'entropy', splitter: 'best', max depth: 5, min samples split: 2 

Support Vector C: 10, kernel: 'rbf', gamma: 'auto' 
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Gradient Boost learning rate: 1, n estimators: 100, subsample: 1, criterion: 'friedman mse', 

min samples 

split: 2, max depth: 3 

Random Forest n estimators: 100, criterion: 'entropy', min samples split: 2, max depth: 9, max 

features: 

'sqrt', min samples leaf: 1 

KNeighbors n neighbors: 7, weights: 'distance', algorithm: 'auto', leaf size: 30 

Elastic Net alpha: 0.1, l1 ratio: 0.5, fit intercept: 'True', max iter: 1000, selection: 'cyclic' 

Ridge solver: 'auto', fit intercept: 'True', max iter: 1000 

Lasso alpha: 0.1, fit intercept: 'True', copy X: 'True', max iter: 1000, selection: 

'cyclic' 

Logistic Regression penalty: 'l2', dual: 'False', C: 10, fit intercept: 'True', solver: 'lbfgs', max iter: 

1000, multi 

class: 'ovr 

XGBoost max depth: 5, alpha: 0.1, booster: 'gbtree', eta: 0.3, min child weight: 1 

ExtraTree criterion: 'gini', splitter: 'best', max depth: 10, min samples split: 2, min 

samples leaf: 1 

AdaBoost n estimators: 500, learning rate: 0.5 

Passive Aggressive C: 1, max iter: 1000 

Table VI: Effect of RFE and SMOTE on the performance of hyper tuned 7-fold G Boost- XG Boost stack Meta 

model 

SMOTE RFE Mean- 

Accuracy 

Mean-F1 

Score 

Mean- 

ROC AUC 

Mean Acc 

Yes Yes 0.927 0.931 0.982 0.947 

Yes NO 0.958 0.961 0.987 0.969 

No Yes 0.924 0.931 0.983 0.946 

No         No 0.920 0.926 0.982 0.943 

 

 

SAMPLE TESTING DATA STRUCTURE 

The dataset could be structured as follows:’ 

1. Sample ID: Unique identifier for each sample. 

2. Age: Age of the individual. 

3. Gender: Gender of the individual. 

4. BMI (Body Mass Index): Calculated using height and weight. 

5. Blood Pressure (Systolic/Diastolic): Recorded in mmHg. 

6. Heart Rate: Measured in beats per minute. 

7. SpO2 (Oxygen Saturation): Percentage of oxygen in the blood. 

8. VOC Sensor 1 Reading: Voltage output corresponding to the concentration of a specific VOC. 

9. VOC Sensor 2 Reading: Voltage output corresponding to another VOC. 

10. VOC Sensor 3 Reading: Voltage output corresponding to another VOC. 

11. VOC Sensor 4 Reading: Voltage output corresponding to another VOC. 

12. Diabetes Status: Binary label (0 for non-diabetic, 1 for diabetic). 

 

Sampl e 

ID 

Ag e Gender BMI Blood 

Pressur e 

Heart 

Rate 

SpO2 VOC 

Sensor 

1 

VOC 

Sensor 

2 

VOC 

Sensor 3 

VOC 

Sensor 4 

Diabetes Status 

001 45 Male 28.5 130/85 75 98% 0.45 0.52 0.48 0.60 Diabetes 

002 32 Female 22.7 120/85 68 99% 0.40 0.50 0.47 0.58 Non-Diabetes 

003 55 Male 30.2 140/90 82 97% 0.55 0.58 0.53 0.65 Diabetes 

004 40 Female 26.4 125/82 70 98% 0.43 0.49 0.46 0.59 Non-Diabetes 

005 37 Male 27.3 128/85 74 97% 0.49 0.53 0.49 0.61 Diabetes 

006 50 Female 29.8 135/88 78 96% 0.53 0.54 0.51 0.63 Diabetes 

007 28 Male 23.5 118/78 65 99% 0.54 0.48 0.45 0.57 Non-Diabetes 

008 55 Male 30.2 140/90 81 97% 0.55 0.58 0.53 0.65 Diabetes 

009 37 Male 27.3 128/85 74 97% 0.49 0.53 0.49 0.61 Diabetes 

010 55 Male 30.2 140/90 82 97% 0.55 0.58 0.53 0.65 Diabetes 
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011 40 Female 26.4 125/82 73 97% 0.43 0.49 0.46 0.59 Non-Diabetes 

012 55 Male 30.2 125/82 82 97% 0.51 0.58 0.53 0.62 Diabetes 

013 56 Male 26.2 135/88 82 98% 0.52 0.58 0.53 0.61 Diabetes 

014 58 Male 30.1 140/90 82 99% 0.45 0.58 0.53 0.58 Non-Diabetes 

015 51 Male 27.2 120/85 82 97% 0.47 0.58 0.53 0.57 Diabetes 

016 48 Male 28.2 125/82 82 98% 0.46 0.58 0.53 0.52 Non-Diabetes 

017 57 

4 

Male 29.2 128/85 82 96% 0.42 0.58 0.53 0.51 Diabetes 

018 40 Female 26.4 125/82 73 97% 0.43 0.49 0.46 0.59 Non-Diabetes 

019 37 Male 27.3 127/85 74 97% 0.49 0.53 0.49 0.61 Diabetes 

020 32 Female 22.7 125/85 69 99% 0.43 0.51 0.47 0.58 Non-Diabetes 

021 58 Male 30.1 140/90 84 99% 0.47 0.58 0.53 0.58 Non-Diabetes 

022 34 Female 24.1 118/80 70 99% 0.41 0.48 0.46 0.57 Non-Diabetes 

023 47 Male 29.5 135/88 78 96% 0.52 0.56 0.50 0.60 Diabetes 

024 50 Female 30.7 138/85 77 97% 0.54 0.59 0.55 0.64 Diabetes 

025 29 Male 23.8 120/80 67 99% 0.42 0.47 0.45 0.55 Non-Diabetes 

026 42 Male 27.5 126/84 72 98% 0.45 0.50 0.48 0.58 Non-Diabetes 

027 56 Male 31.0 142/92 84 96% 0.56 0.60 0.57 0.66 Diabetes 

028 33 Male 22.9 118/78 68 99% 0.40 0.49 0.45 0.56 Non-Diabetes 

029 48 Male 28.7 130/85 75 97% 0.51 0.55 0.51 0.60 Diabetes 

030 39 Male 26.0 124/81 70 98% 0.43 0.49 0.46 0.59 Non-Diabetes 

031 41 Male 29.1 132/87 77 97% 0.52 0.57 0.52 0.61 Diabetes 

032 53 Male 28.4 134/88 76 96% 0.50 0.56 0.53 0.63 Diabetes 

033 27 Male 23.4 118/78 66 99% 0.41 0.46 0.44 0.55 Non-Diabetes 

034 45 Male 29.2 130/85 75 98% 0.53 0.57 0.50 0.61 Diabetes 

035 36 Male 26.7 128/83 74 98% 0.49 0.54 0.50 0.59 Diabetes 

036 52 Male 28.5 133/86 77 97% 0.50 0.55 0.52 0.62 Diabetes 

037 38 Male 25.9 126/82 71 98% 0.46 0.50 0.48 0.57 Non-Diabetes 

038 44 Female 27.8 129/85 74 98% 0.47 0.51 0.49 0.59 Non-Diabetes 

039 55 Male 30.0 140/90 80 96% 0.55 0.59 0.54 0.64 Diabetes 

040 31 Male 22.5 118/78 68 99% 0.40 0.47 0.44 0.54 Non-Diabetes 

041 46 Male 28.6 133/87 76 97% 0.52 0.56 0.51 0.60 Diabetes 

042 35 Female 24.9 124/82 72 98% 0.44 0.50 0.47 0.58 Non-Diabetes 

043 49 Male 29.4 136/89 78 97% 0.54 0.58 0.53 0.62 Diabetes 

044 32 Female 23.0 119/79 69 99% 0.41 0.48 0.45 0.56 Non-Diabetes 

045 54 Female 30.3 141/91 82 96% 0.56 0.60 0.55 0.64 Diabetes 

046 33 Female 22.8 118/78 68 99% 0.40 0.49  

0.45 

0.55 Non-Diabetes 

047 51 Female 27.5 132/86 76 97% 0.50 0.55  

0.51 

0.61 Diabetes 

048 37 Female 25.7 123/80 71 98% 0.45 0.51 0.47 0.59 Non-Diabetes 

049 43 Female 28.8  

131/84 

75 97% 0.51 0.57 0.50 0.60 Diabetes 

050 40 Female 26.3 125/81 73 98% 0.44 0.50 0.47 0.58 Non-Diabetes 
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RESULTS AND DISCUSSION: The system's performance was evaluated by comparing various machine learning 

models, as illustrated in Figure 2. The prototype, shown in Figure 3, successfully collected and analyzed breath samples, 

with the UI (Figure 4) facilitating easy data entry and result viewing. The ML model demonstrated high accuracy in 

predicting diabetes based on the breath samples, providing instant feedback to users. 

 

CONCLUSION: This paper presents a non-invasive glucometer system for detecting diabetes using breath samples. The 

device offers a promising alternative to traditional finger-prick tests, providing a portable, affordable, and user-friendly 

solution for early diabetes detection. Future work will focus on refining the ML model and expanding the dataset to 

improve accuracy and reliability. 
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