Molecular Dynamics Simulation of Fusion Inhibitors Targeting SARS-Cov-2 Entry Pathways

  • Mohan Kumar B. S.
  • Sethupathi Raj S.
  • Kumar
  • Shalini K. S.
  • V. N. Narasimha Murthy
  • Rudresh Kumar K.J.
Keywords: .

Abstract

Molecular dynamics (MD) simulations are critical in drug design for evaluating the stability of protein-ligand interactions under physiological conditions. In this study, MD simulations were used to analyze the behavior and binding stability of two fusion inhibitors, Happy_00 and Happy_06, targeting the SARS-CoV-2 spike protein cleavage sites. These inhibitors were designed to block the action of TMPRSS2, a key enzyme facilitating viral entry. The simulations were conducted using the GROMACS 2021.3 package, with systems solvated using the TIP3P water model and neutralized with sodium ions. Energy minimization, followed by NVT (constant volume) and NPT (constant pressure) equilibration, ensured the system’s stability before running the production MD for 50 nanoseconds. Visualization tools, including PyMol and VMD, were used to analyze simulation trajectories. Key metrics such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and Radius of Gyration (Rg) were computed to assess structural stability and flexibility. RMSD values remained consistent (~2.5 Å), indicating minimal deviation from the initial docked conformations. RMSF analysis revealed that Happy_06 exhibited greater flexibility due to its linkers, allowing better adaptation to dynamic protein surfaces. Rg data confirmed the inhibitors maintained their compact structures throughout the simulation. These results suggest that both inhibitors can stably bind SARS-CoV-2 spike cleavage sites, with Happy_06 demonstrating enhanced flexibility and potential for deeper site interaction. This study highlights the utility of MD simulations in evaluating drug candidates, offering insights for future experimental validation of these inhibitors as antiviral therapeutics.

Author Biographies

Mohan Kumar B. S.

Department of Zoology, Maharani Cluster University, Bengaluru-560001, Karnataka, India

Sethupathi Raj S.

Department of Biochemistry and Molecular biology, Pondicherry University, Pondicherry-605014, India

Kumar

 

Department of Zoology, Government First Grade College of Arts, Science and Commerce,

Sira-572137, Karnataka, India

Shalini K. S.

Department of Chemistry, Maharani Cluster University, Bengaluru-560001, Karnataka, India

V. N. Narasimha Murthy

Department of Physics, Maharani Cluster University, Bengaluru-560001, Karnataka, India

Rudresh Kumar K.J.

Department of Chemistry, RV Institute of Technology and Management, Bengaluru-560076, Karnataka, India

References

1. Abdalla, M., Eltayb, W. A., El-Arabey, A. A., Singh, K., & Jiang, X. (2022). Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine, 141, 105025.
2. Baughn, L. B., Sharma, N., Elhaik, E., Sekulic, A., Bryce, A. H., & Fonseca, R. (2020). Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clinic Proceedings, 95(9), 1989–1999.
3. Borkotoky, S., Dey, D., Hazarika, Z., Joshi, A., & Tripathi, K. (2022). Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophysical Chemistry, 291, 106908.
4. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.
5. Hoffmann, M., Kleine-Weber, H., & Pöhlmann, S. (2020). A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Molecular Cell, 78(4), 779-784.e5.
6. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8.
7. Ke, Q., Gong, X., Liao, S., Duan, C., & Li, L. (2022). Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. Journal of Molecular Liquids, 365, 120116.
8. Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37.
9. Lobanov, M. Yu., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628.
10. Masako, A., Maino, T., Kouji, S., Hiromi, Y., Kazuhiko, K., Kazuya, S., Miyuki, K., Masahiro, N., Hirokazu, K., Shutoku, M., Hideo, F., Katsumi, M., Katsumi, M., Yasushi, A., Mariko, E., Atsushi, K., & Makoto, T. (2013). TMPRSS2 Is an Activating Protease for Respiratory Parainfluenza Viruses. Journal of Virology, 87(21), 11930–11935.
11. Mohan Kumar B. S., Sethupathi Raj S, Kumar, Shalini K. S, Narasimha Murthy V. N, & Rudresh Kumar K.J. (2023). In Silico Design of Tetanus Toxoid-Derived Fusion Peptides as Antiviral Therapeutics. Revista Electronica de Veterinaria, 24(1), 150–156.
12. Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620.
13. D’mello, D., Shivasharanappa, K., Hanchinalmath J.V., & Patil, S.J. In silico approaches in drug discovery for SARS-CoV-2. (2022). Corona virus drug discovery: Druggable targets and in silico update. Elsevier Publishers, p: 235-252.
14. Reva, B. A., Finkelstein, A. V, & Skolnick, J. (1998). What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Folding and Design, 3(2), 141–147.
15. Schiffrin, B., Radford, S. E., Brockwell, D. J., & Calabrese, A. N. (2020). PyXlinkViewer: A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Science, 29(8), 1851–1857.
16. Silacci, M., Baenziger-Tobler, N., Lembke, W., Zha, W., Batey, S., Bertschinger, J., & Grabulovski, D. (2014). Linker Length Matters, Fynomer-Fc Fusion with an Optimized Linker Displaying Picomolar IL-17A Inhibition Potency *. Journal of Biological Chemistry, 289(20), 14392–14398.
17. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.
18. Vieira, I. H. P., Botelho, E. B., de Souza Gomes, T. J., Kist, R., Caceres, R. A., & Zanchi, F. B. (2023). Visual dynamics: a WEB application for molecular dynamics simulation using GROMACS. BMC Bioinformatics, 24(1), 107.
Published
2023-05-30
How to Cite
Mohan Kumar B. S., Sethupathi Raj S., Kumar, Shalini K. S., V. N. Narasimha Murthy, & Rudresh Kumar K.J. (2023). Molecular Dynamics Simulation of Fusion Inhibitors Targeting SARS-Cov-2 Entry Pathways. Revista Electronica De Veterinaria, 24(2), 573 - 579. https://doi.org/10.69980/redvet.v24i2.1401
Section
Articles