The Role of Biotechnology in Climate Change Mitigation
Abstract
Human activities that involve fossil fuel combustion, deforestation, and industrial emissions have become major causes of climate change, which ranks as a top global issue during the twenty-first century. This crisis is being combated by biotechnology as a key tool to offer innovative solutions in all sectors, such as carbon sequestration, biofuels, sustainable agriculture, and waste management. Carbon capture can be improved through genetic engineering, synthetic biology, and microbial technologies, and renewable energy can be produced biotechnologically, as well as climate-resilient crops. In addition, bioengineered plants and microorganisms can help significantly decrease the levels of CO₂, and biofuels created from modified crops and algae provide cleaner alternatives to fossil fuels. Although there exist potential benefits, the challenges are financial, and the risks are moral and environmental, as well as the issue of scalability. The deployment of these biotechnological solutions depends on effective policy and regulatory frameworks that limit the safety and efficacy risks related to them, in the mitigation of climate change. With global efforts at mediatized climate change mitigation increasing, biotechnology’s contribution is bound to become highly significant in reducing the greenhouse effect, thus providing ways to a more sustainable future.
References
2. Aerni, P., Gagalac, F., & Scholderer, J. (2015). The role of biotechnology in combating climate change: A question of politics? Science and Public Policy, 43(1), 13–28. https://doi.org/10.1093/scipol/scv014
3. Agarwal, P., Soni, R., Kaur, P., Madan, A., Mishra, R., Pandey, J., Singh, S., & Singh, G. (2022). Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Frontiers in microbiology, 13, 939347. https://doi.org/10.3389/fmicb.2022.939347
4. Beattie, G. A., Edlund, A., Esiobu, N., Gilbert, J., Nicolaisen, M. H., Jansson, J. K., Jensen, P., Keiluweit, M., Lennon, J. T., Martiny, J., Minnis, V. R., Newman, D., Peixoto, R., Schadt, C., & van der Meer, J. R. (2025). Soil microbiome interventions for carbon sequestration and climate mitigation. mSystems, 10(1), e0112924. https://doi.org/10.1128/msystems.01129-24
5. Behera, S. S., Saranraj, P., & Ray, R. C. (2022). Microbial bioethanol fermentation technologies—Recent trends and future prospects. In Elsevier eBooks (pp. 75–108). https://doi.org/10.1016/b978-0-12-824116-5.00011-8
6. Ben-Alon, L., Loftness, V., Harries, K. A., & Hameen, E. C. (2021). Life cycle assessment (LCA) of natural vs conventional building assemblies. Renewable and Sustainable Energy Reviews, 144, 110951.
7. Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Soil carbon sequestration - An interplay between soil microbial community and soil organic matter dynamics. The Science of the total environment, 815, 152928. https://doi.org/10.1016/j.scitotenv.2022.152928
8. Brandon, A. G., & Scheller, H. V. (2020). Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass. Frontiers in Plant Science, 11, 519455. https://doi.org/10.3389/fpls.2020.00282
9. Chen, P. R., & Xia, P. F. (2024). Carbon recycling with synthetic CO2 fixation pathways. Current opinion in biotechnology, 85, 103023. https://doi.org/10.1016/j.copbio.2023.103023
10. Clarke, L., & Kitney, R. (2020). Developing synthetic biology for industrial biotechnology applications. Biochemical Society transactions, 48(1), 113–122. https://doi.org/10.1042/BST20190349
11. Das, B., Mondol, J. D., Debnath, S., Pugsley, A., Smyth, M., & Zacharopoulos, A. (2020). Effect of the absorber surface roughness on the performance of a solar air collector: an experimental investigation. Renewable Energy, 152, 567-578.
12. Das, B., Mondol, J. D., Debnath, S., Pugsley, A., Smyth, M., & Zacharopoulos, A. (2020). Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation. Renewable Energy, 152, 567–578. https://doi.org/10.1016/j.renene.2020.01.056
13. DeLisi C. (2019). The role of synthetic biology in climate change mitigation. Biology direct, 14(1), 14. https://doi.org/10.1186/s13062-019-0247-8
14. Douglas, M. E., Ali, F. A., Costa, A., & Diffley, J. F. (2018). The mechanism of eukaryotic CMG helicase activation. Nature, 555(7695), 265-268.
15. Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reproduction, 29(1-2), 67–79. https://doi.org/10.1007/s00497-016-0275-9
16. Fang, J., Yu, G., Liu, L., Hu, S., & Chapin, F. S., 3rd (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16), 4015–4020. https://doi.org/10.1073/pnas.1700304115
17. Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I. S., & Chang, J. S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology advances, 43, 107554. https://doi.org/10.1016/j.biotechadv.2020.107554
18. Feng, J., Dan, X., Cui, Y., Gong, Y., Peng, M., Sang, Y., Ingvarsson, P. K., & Wang, J. (2024). Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. Plant communications, 5(10), 101044. https://doi.org/10.1016/j.xplc.2024.101044
19. Fuchs, W., Rachbauer, L., Rittmann, S. K. R., Bochmann, G., Ribitsch, D., & Steger, F. (2023). Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms, 11(6), 1514. https://doi.org/10.3390/microorganisms11061514
20. Chandra, S. and Chakraborty, D. (2023). Isolation and characterization of plant growth promoting bacteria from root nodules of Cicer arientinum L. International Journal of Plant and Soil Science 35(14): 404-409.
21. Gupta, M., Srivastava, M., Agrahari, S. K., & Detwal, P. (2018). Waste to energy technologies in India: A review. Journal of Energy and Environmental Sustainability, 6, 29–35. https://doi.org/10.47469/jees.2018.v06.100064
22. Hu, J., Wang, D., Chen, H., & Wang, Q. (2023). Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. International journal of molecular sciences, 24(3), 1898. https://doi.org/10.3390/ijms24031898
23. IPCC. (2018). Global warming of 1.5°C: An IPCC special report. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/sr15/
24. IPCC. (2021). Summary for policymakers. In: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
25. Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: a review. Proceedings. Mathematical, physical, and engineering sciences, 476(2243), 20200351. https://doi.org/10.1098/rspa.2020.0351
26. Jones, N., Graziano, M., & Dimitrakopoulos, P. G. (2020). Social impacts of European Protected Areas and policy recommendations. Environmental Science & Policy, 112, 134-140.
27. Kovak, E., Blaustein-Rejto, D., & Qaim, M. (2022). Genetically modified crops support climate change mitigation. Trends in Plant Science, 27(7), 627-629. https://doi.org/10.1016/j.tplants.2022.01.004
28. Kumar, A., Bhansali, S., Gupta, N., & Sharma, M. (2019). Bioenergy and climate change: greenhouse gas mitigation. Prospects of Renewable Bioprocessing in Future Energy Systems, 269-289.
29. Lee, S. Y., Sankaran, R., Chew, K. W., Tan, C. H., Krishnamoorthy, R., Chu, D., & Show, P. (2019). Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 1(1). https://doi.org/10.1186/s42500-019-0004-7
30. Machín, A., Cotto, M., Ducongé, J., & Márquez, F. (2023). Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics (Basel, Switzerland), 8(3), 298. https://doi.org/10.3390/biomimetics8030298
31. Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants (Basel, Switzerland), 9(1), 97. https://doi.org/10.3390/plants9010097
32. Malusà, E., Berg, G., Biere, A., Bohr, A., Canfora, L., Jungblut, A. D., ... & Mocali, S. (2021). A holistic approach for enhancing the efficacy of soil microbial inoculants in agriculture:: from lab to field scale. Global Journal of Agricultural Innovation, Research & Development, 8, 176-190.
33. Martín-González, D., de la Fuente Tagarro, C., De Lucas, A., Bordel, S., & Santos-Beneit, F. (2024). Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. International journal of molecular sciences, 25(10), 5536. https://doi.org/10.3390/ijms25105536
34. Mbaya, H., Lillico, S., Kemp, S., Simm, G., & Raybould, A. (2022). Regulatory frameworks can facilitate or hinder the potential for genome editing to contribute to sustainable agricultural development. Frontiers in bioengineering and biotechnology, 10, 959236. https://doi.org/10.3389/fbioe.2022.959236
35. Mei, X., Chen, Y., Fang, C., Xu, L., Li, J., Bi, S., ... & Zhang, Z. (2019). Acetonitrile wastewater treatment enhanced by a hybrid membrane-aerated bioreactor containing aerated and non-aerated zones. Bioresource technology, 289, 121754.
36. Nahwani, A., Soeprijanto, S., & Widodo, E. (2024). Strategic model for integrating biogas a framework for sustainable energy integration in agro-industries. Scientific reports, 14(1), 31515. https://doi.org/10.1038/s41598-024-83181-1
37. Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental chemistry letters, 20(1), 379–395. https://doi.org/10.1007/s10311-021-01334-4
38. Nguyen, T. N., Nguyen, M. N., McNamara, M., Dultz, S., Meharg, A., & Nguyen, V. T. (2019). Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils. Environmental and Experimental Botany, 162, 58-66.
39. Noack, F., Engist, D., Gantois, J., Gaur, V., Hyjazie, B. F., Larsen, A., M'Gonigle, L. K., Missirian, A., Qaim, M., Sargent, R. D., Souza-Rodrigues, E., & Kremen, C. (2024). Environmental impacts of genetically modified crops. Science (New York, N.Y.), 385(6712), eado9340. https://doi.org/10.1126/science.ado9340
40. Onyeaka, H., & Ekwebelem, O. C. (2023). A review of recent advances in engineering bacteria for enhanced CO2 capture and utilization. International journal of environmental science and technology : IJEST, 20(4), 4635–4648. https://doi.org/10.1007/s13762-022-04303-8
41. Pessoa, A., Jr, Roberto, I. C., Menossi, M., dos Santos, R. R., Filho, S. O., & Penna, T. C. (2005). Perspectives on bioenergy and biotechnology in Brazil. Applied biochemistry and biotechnology, 121-124, 59–70. https://doi.org/10.1385/abab:121:1-3:0059
42. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic cell, 9(4), 486–501. https://doi.org/10.1128/EC.00364-09
43. Raman R. (2017). The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM crops & food, 8(4), 195–208. https://doi.org/10.1080/21645698.2017.1413522
44. Ray, S., & Kumar, N. (2018). Strategies to lower carbon emissions in industry. In India studies in business and economics (pp. 65–80). https://doi.org/10.1007/978-981-13-0905-2_7
45. Robertson, G. P., Hamilton, S. K., Paustian, K., & Smith, P. (2022). Land-based climate solutions for the United States. Global change biology, 28(16), 4912–4919. https://doi.org/10.1111/gcb.16267
46. Saad, M. G., Dosoky, N. S., Zoromba, M. S., & Shafik, H. M. (2019). Algal biofuels: current status and key challenges. Energies, 12(10), 1920. https://doi.org/10.3390/en12101920
47. Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831
48. Santos Correa, S., Schultz, J., Lauersen, K. J., & Soares Rosado, A. (2023). Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of advanced research, 47, 75–92. https://doi.org/10.1016/j.jare.2022.07.011
49. Selin, & Eckley, N. (2025). Carbon sequestration | Definition, Methods, & Climate Change. Encyclopedia Britannica. https://www.britannica.com/technology/carbon-sequestration
50. Sharma, M., Agarwal, S., Agarwal Malik, R., Kumar, G., Pal, D. B., Mandal, M., Sarkar, A., Bantun, F., Haque, S., Singh, P., Srivastava, N., & Gupta, V. K. (2023). Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered, 14(1), 2184518. https://doi.org/10.1080/21655979.2023.2184518
51. Şimşek, Ö., Isak, M. A., Dönmez, D., Dalda Şekerci, A., İzgü, T., & Kaçar, Y. A. (2024). Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. Plants (Basel, Switzerland), 13(5), 717. https://doi.org/10.3390/plants13050717
52. Symons, J., Dixon, T. A., Dalziell, J., Curach, N., Paulsen, I. T., Wiskich, A., & Pretorius, I. S. (2024). Engineering biology and climate change mitigation: Policy considerations. Nature communications, 15(1), 2669. https://doi.org/10.1038/s41467-024-46865-w
53. Tadesse Mawcha, K., Malinga, L., Muir, D., Ge, J., & Ndolo, D. (2025). Recent Advances in Biopesticide Research and Development with a Focus on Microbials. F1000Research, 13, 1071. https://doi.org/10.12688/f1000research.154392.2
54. Terzaghi, E., De Nicola, F., Cerabolini, B. E., Posada-Baquero, R., Ortega-Calvo, J. J., & Di Guardo, A. (2020). Role of photo-and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Science of the Total Environment, 739, 139893.
55. Tyczewska, A., Twardowski, T., & Woźniak-Gientka, E. (2023). Agricultural biotechnology for sustainable food security. Trends in biotechnology, 41(3), 331–341. https://doi.org/10.1016/j.tibtech.2022.12.013
56. UNFCCC. (2015). Paris Agreement. United Nations Framework Convention on Climate Change. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
57. Varela Villarreal, J., Burgués, C., & Rösch, C. (2020). Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. Biotechnology for biofuels, 13, 92. https://doi.org/10.1186/s13068-020-01730-y
58. Vicente, D., Proença, D. N., & Morais, P. V. (2023). The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. International journal of environmental research and public health, 20(4), 2959. https://doi.org/10.3390/ijerph20042959
59. Wan, K., Shackley, S., Doherty, R. M., Shi, Z., Zhang, P., & Golding, N. (2020). Science-policy interplay on air pollution governance in China. Environmental Science & Policy, 107, 150-157.
60. Wang, S., Xu, C., Song, L., & Zhang, J. (2022). Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. International journal of environmental research and public health, 19(15), 9519. https://doi.org/10.3390/ijerph19159519
61. Wu, Q., Bao, X., Guo, W., Wang, B., Li, Y., Luo, H., ... & Ren, N. (2019). Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnology advances, 37(5), 599-615.
62. Xu, Y., Sun, L., Lal, R., Bol, R., Wang, Y., Gao, X., ... & Wang, J. (2020). Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols. Soil Biology and Biochemistry, 148, 107901.
63. Zaki, M. T., Rowles, L. S., Adjeroh, D. A., & Orner, K. D. (2023). A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste. ACS ES&T engineering, 3(10), 1424–1467. https://doi.org/10.1021/acsestengg.3c00043
64. Zealand, A. M., Mei, R., Roskilly, A. P., Liu, W., & Graham, D. W. (2019). Molecular microbial ecology of stable versus failing rice straw anaerobic digesters. Microbial biotechnology, 12(5), 879-891.