Enzyme-Enhanced Symbiotics: A Sustainable Alternative to Antibiotic Growth Promoters in Broiler Chickens

  • Andrade-Muyulema Erick
  • Ramírez-Gallardo Bismarck
  • Cuenca-Condoy Mercy
Keywords: Synbiotics; enzymes; broiler chickens; productive parameters; intestinal morphometry; immunoglobulins; digestibilit.

Abstract

This study evaluated the effect of dietary supplementation with enzyme-enhanced symbiotic on productive, immunological, digestive, and histo-morphological parameters in broiler chickens. The research was conducted under commercial conditions in the Balsas canton, El Oro province (Ecuador), using a longitudinal experimental design. A total of 84,000 birds were randomly allocated to four treatments: T0 (control), T1 (0.01%), T2 (0.03%), and T3 (0.05%) symbiotic, all combined with 0.01% protease enzymes. Productive performance, apparent digestibility, intestinal morphometry, and serum immunoglobulins (IgY, IgM, IgA) were assessed on days 1 and 21 of age. Treatment T2 (0.03%) yielded the best zootechnical performance, with greater weight gain, more efficient feed conversion, and enhanced intestinal mucosal development, as evidenced by increased villus length and density. Additionally, T2 improved crude protein and fat digestibility and significantly stimulated IgM production, suggesting more effective enteric immune activation. In contrast, T3 (0.05%) exhibited negative effects on intestinal morphology and weight gain, indicating that higher concentrations may cause physiological interference. No clear dose-dependent trend was observed for crude fiber and dry matter digestibility. Statistical analysis confirmed significant differences (p < 0.05) among treatments. In conclusion, supplementation with 0.03% symbiotic enhanced with enzymes proved to be the most effective strategy for improving intestinal health, nutrient utilization, and productive performance in broiler chickens, establishing itself as a promising functional alternative for intensive poultry systems.

Author Biographies

Andrade-Muyulema Erick

Universidad Católica de Cuenca, Carrera de Medicina Veterinaria, Cuenca-Ecuador

Ramírez-Gallardo Bismarck

Universidad Católica de Cuenca, Carrera de Medicina Veterinaria, Cuenca-Ecuador

Cuenca-Condoy Mercy

Universidad Católica de Cuenca, Carrera de Medicina Veterinaria, Cuenca-Ecuador

References

[1] Aguilera, L. (2018). Protease Enzymes and Their Use in Poultry Farming. BM Editores. Retrieved 7 March 2025, from https://bmeditores.mx/avicultura/las-enzimas-proteasas-y-su-uso-en-avicultura-1618/
[2] Ali, B., Alev, B., Ahmet, E., Pınar, S., & Ankara, V. (2020). Improving Performance in Chickens through the Use of Probiotics and Synbiotics. Revista NutriNews. Retrieved 5 March 2025, from https://nutrinews.com/mejorar-el-rendimiento-mediante-el-uso-de-probioticos-y-simbioticos-en-pollos/
[3] Angelakis, E. (2017). Weight Gain by Gut Microbiota Manipulation in Productive Animals. Microbial Pathogenesis, 106, 162–170. https://doi.org/10.1016/j.micpath.2016.11.002
[4] Arsène, M., Davares, A., Andreevna, S., Vladimirovich, E., Carime, B., Marouf, R., & Khelifi, I. (2021). The Use of Probiotics in Animal Feeding for Safe Production and as Potential Alternatives to Antibiotics. Vet World, 14(2), 319–328. https://doi.org/10.14202/vetworld.2021.319-328
[5] Attia, Y.A., Basiouni, S., Abdulsalam, N.M., Bovera, F., Aboshok, A.A., Shehata, A.A., & Hafez, H.M. (2023). Alternative to Antibiotic Growth Promoters: Beneficial Effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus Supplementation on the Growth Performance and Sustainability of Broilers’ Production. Frontiers in Veterinary Science, 10, 1–10.
[6] Awais, M.M., Jamal, M.A., Akhtar, M., Hameed, M.R., Anwar, M.I., & Ullah, M.I. (2019). Immunomodulatory and Ameliorative Effects of Lactobacillus and Saccharomyces-Based Probiotics on Pathological Effects of Eimeriasis in Broilers. Microbial Pathogenesis, 126, 101–108. https://doi.org/10.1016/j.micpath.2018.10.038
[7] Blajman, J., Zbrun, M., Astesana, D., Berisvil, A., Romero, A., Fusari, M., Soto, L., Signorini, M., Rosmini, L., & Frizzo, L. (2015). Probiotics in Broiler Chickens: A Strategy for Intensive Production Models. Revista Argentina de Microbiología, 47(4), 360–367.
[8] Cancho, B., García, M., & Simal, J. (2000). The Use of Antibiotics in Animal Feeding: Current Perspective. Ciencia y Tecnología Alimentaria, 3(1), 39–47.
[9] Castro, M., & Rodríguez, F. (2005). Yeasts: Probiotics and Prebiotics That Improve Animal Production. Corpoica Ciencia y Tecnología Agropecuaria, 6(1), 26–38.
[10] Cepero, R. (2013). Withdrawal of Growth-Promoting Antibiotics in the European Union: Causes and Consequences. Spanish Association of Poultry Science. Retrieved 7 March 2025, from https://www.wpsa-aeca.es/aeca_imgs_docs/24_01_30_MEXICO05-RCB.pdf
[11] Corporación Nacional de Avicultores del Ecuador – CONAVE. (2021). Importance of the Poultry Sector for the Country. Retrieved 15 April 2025, from https://conave.org/importancia-del-sector-avicola-al-pais/
[12] Cortés, A., Águila, R., & Ávila, E. (2002). Use of Enzymes as Additives in Diets for Broiler Chickens. Veterinaria México, 33(1), 1–9. https://www.redalyc.org/pdf/423/42333101.pdf
[13] Cuenca, M., Chauca, J., García, C., & Sigüencia, H. (2022). Saccharomyces cerevisiae as a Replacement Alternative to Growth-Promoting Antibiotics in Animal Feed. Archivos de Zootecnia, 71(273), 62–69.
[14] Cueva, J., & Maldonado, S. (2011, 29 November). Problems in the Poultry Sector. El Sitio Avícola. https://www.elsitioavicola.com/poultrynews/23204/problemas-en-sector-avacola/
[15] da Silva, G., Beltrão, N., de Freitas, L., de Lima, M., & Luchese, R. (2018). Performance and Carcass Yield of Female Broilers Fed Diets Containing Probiotics and Synbiotics as an Alternative to Growth Enhancers. Acta Scientiarum. Animal Sciences, 40, e39916. https://doi.org/10.4025/actascianimsci.v40i1.39916
[16] Díaz, E.A., Ángel, J., & Ángel, D. (2017). Probiotics in Poultry Farming: A Review. Revista Médica Veterinaria, 35, 175–189. http://dx.doi.org/10.19052/mv.4400
[17] Ding, X., Li, D., Bai, S., Wang, J., Zeng, Q., Su, Z., Xuan, Y., & Zhang, K. (2018). Effect of Dietary Xylooligosaccharides on Intestinal Characteristics, Gut Microbiota, Cecal Short-Chain Fatty Acids, and Plasma Immune Parameters of Laying Hens. Poultry Science, 97(3), 874–881. https://doi.org/10.3382/ps/pex372
[18] Dong, S., Li, L., Hao, F., Fang, Z., Zhong, R., Wu, J., & Fang, X. (2024). Improving Quality of Poultry and Its Meat Products with Probiotics, Prebiotics, and Phytoextracts. Poultry Science, 103(2), 1–12.
[19] Dwain, R., & Vallentine, J. (2011). Forage Quality – Digestibility. Encyclopedia of Dairy Sciences. Second Edition. https://www.sciencedirect.com/topics/food-science/digestibility
[20] Edens, F. (2003). An Alternative to Antibiotic Use in Poultry: Probiotics. Brazilian Journal of Poultry Science, 5(2), 1–8. https://doi.org/10.1590/S1516-635X2003000200001
[21] Espinosa, I., Báez, M., Hernández, R., López, Y., Lobo, E., & Corona, B. (2019). Antimicrobial Resistance in Bacteria of Animal Origin: Challenges for Its Containment from the Laboratory. Revista de Salud Animal, 41(3), 1–19.
[22] Fu, Ch., Ali, A., Ullah, R., Shuaib, M., & Wanapat, M. (2023). Emerging Trends and Applications in Health-Boosting Microorganisms – Specific Strains for Enhancing Animal Health. Microbial Pathogenesis, 183, 1–6. https://doi.org/10.1016/j.micpath.2023.106290
[23] Giménez, R., & Calvo, F. (2024). Reformulating Diets in Times of High Costs. AviNews. https://avinews.com/download/1124-IFF-Dietas-avinews-def-copia.pdf
[24] González, A., Ponce, L., Alcivar, J., Valverde, Y., & Gabriel, J. (2020). Nutritional Supplementation with Growth Promoters in Cobb 500 Broiler Chickens. Journal of Selva Andina Animal Science, 7(1), 3–16.
[25] González, N., Ayala, J., & Correa, L. (2020). Strategies for Stimulating Sustainable Economy in the Poultry Sector of the Balsas Canton, El Oro Province. Revista Científica Agroecosistemas, 8(1), 23–28.
[26] Gutiérrez, L., Montoya, O., & Vélez, J. (2013). Probiotics: A Clean Production Alternative and Replacement for Growth-Promoting Antibiotics in Animal Feeding. Producción + Limpia, 135–146.
[27] Gutiérrez, M. (2018, 9 January). Ecuadorian Poultry Farmers Announce They Are Producing at a Loss. Revista AviNews. https://avinews.com/avicultores-ecuatorianos-anuncian-que-estan-produciendo-a-perdidas/
[28] Instituto Nacional de Estadística y Censo – INEC. (2022). Agricultural Area and Production Survey – ESPAC. https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/
[29] Jalantha, P., Sudhakar, G., Pazhanivel, N., Parthiban, M., Veeramani, P., Sarath, G., Soundararajan, C., & Biswadeep, B. (2024). Behavioural Changes and Clinical Signs in Broiler Chickens with Induced Aflatoxicosis and Improvement with Probiotics and Silymarin. The Indian Veterinary Journal, 101(2), 39–43. https://doi.org/10.62757/IVA.2024.101.2.39-43
[30] Jaramillo, J. (2023). Chicken Meat Consumption in Ecuador Increased by 3.14% in 2022. El Comercio, p. 4. https://www.elcomercio.com/actualidad/ecuador/ecuador-consumo-carne-pollo-aumento-2022/
[31] Juárez, P., Cortes, A., Arce, J., Del Río, J., Gómez, J., & Avila, E. (2020). Effect of a Multienzymatic Complex and a Probiotic on Laying Hens Fed Soya-Canola-Sorghum Diets. Revista Mexicana de Ciencias Pecuarias, 11(2), 369–379. https://doi.org/10.22319/rmcp.v11i2.4843
[32] Jurado, H., & Zambrano, E. (2020). Effect of Microencapsulated Lactobacillus casei on Intestinal Health and Biochemical and Productive Parameters in Broiler Chickens. Revista UDCA Actualidad & Divulgación Científica, 23(2), e1480, 1–10.
[33] Jurado, H., Zambrano, E., & Pazos, A. (2021). Addition of a Microencapsulated Lactobacillus plantarum Probiotic in Broiler Chicken Feed. Universidad Salud, 23(2), 151–161.
[34] Majó, N., & Dolz, R. (2011). Atlas of Avian Necropsy. Servet, Zaragoza, Spain. First edition, 1–82.
[35] Ministry of Agriculture and Livestock – MAG. (2023). Ecuador Exports Chicken Meat for the First Time. Retrieved 5 March 2025, from https://www.agricultura.gob.ec/ecuador-exporta-por-primera-vez-carne-de-pollo/
[36] Navarrete, E. (2020). Importance of Poultry Production in the National Context. Revista Técnica Maíz y Soya. Retrieved 5 March 2025, from https://www.maizysoya.com/lector.php?id=20200585
[37] Nuñez, M. (2018). Crisis in Balsas. Revista Maíz y Soya. Retrieved 7 March 2025, from https://www.maizysoya.com/lector.php?id=20180224&tabla=articulos
[38] Orús, A. (2024, 25 September). Leading Countries in Chicken Meat Production Worldwide 2023–2024 (in Thousand Metric Tons). Retrieved 10 May 2025, from https://es.statista.com/estadisticas/1330308/paises-lideres-en-produccion-de-carne-de-pollo-a-nivel-mundial/#:~:text=Y%20es%20que%20seg%C3%BAn%20las,millones%20de%20toneladas%20cada%20uno.
[39] Paredes, M., & Mantilla, J. (2024). Effect of Yeast Postbiotic Plus Camu Camu (Myrciaria dubia) on Growth Performance, Immune Organ Weight, and Antibody Titres in Broiler Chickens. Revista de Investigación Veterinaria del Perú, 35(6), e29631, 1–12. https://doi.org/10.15381/rivep.v35i6.29631
[40] Pomboza, P., Guerrero, R., Guevara, D., & Rivera, V. (2018). Poultry Farms and Self-Sufficiency of Maize and Soya: The Case of Tungurahua-Ecuador. Estudios Sociales, 28(51), 1–25. http://dx.doi.org/10.24836/es.v28i51.511
[41] Rodríguez, M., Castillo, D., Rosquete, N., Rondón, A., Milián, G., & Beruvides, A. (2020). Evaluation of the Symbiotic Effect of PROBIOLEV® in Heavy Pure Line Birds during Maturity. Revista de Producción Animal, 35(1), 1–13. Retrieved 5 March 2025, from http://scielo.sld.cu/pdf/rpa/v35n1/2224-7920-rpa-35-01-79.pdf
[42] Rodríguez, S., & Moreno, G. (2016). Evaluation of the Effect of Lactobacillus spp. on the Development of the Small Intestine in Broiler Chickens. Ciencia y Agricultura, 13(1), 49–58.
[43] Romero, H. (2018). Low Chicken Prices Cause Severe Crisis in El Oro. Revista Maíz y Soya. Retrieved 7 March 2025, from https://www.maizysoya.com/lector.php?id=20180216&tabla=articulos
[44] Romero, L. (2017). The Poultry Sector Is Exposed to Constant Price Crises. Revista Maíz y Soya. Retrieved 7 March 2025, from https://www.maizysoya.com/lector.php?id=20170322&tabla=articulos
[45] Romero, R. (2015). Development and Territorial Planning Plan of Bellamaría Parish. Autonomous Decentralised Government of Bellamaría. Retrieved 5 March 2025, from https://www.gadbellamaria.gob.ec/images/POT.pdf
[46] Ruíz, B. (2023, 12 May). Latin American Ranking of Chicken and Egg Consumption. Poultry Chair. Retrieved 5 March 2025, from https://catedralatam.com/ranking-latinoamericano-de-consumo-de-pollo-y-huevo/
[47] Santos, J., Mendes, A., Rossi, P., Cella, S., Narváez, W., Carvalho, E., Groff, P., & Takahashi, S. (2016). Probiotics and Synbiotics on Performance and Intestinal Morphometry of Broiler Chickens Challenged with Salmonella enteritidis. Revista Electrónica de Veterinaria, 17(9), 1–16. https://www.redalyc.org/pdf/636/63647456005.pdf
[48] Santovito, E., Greco, D., Logrieco, A., & Avantaggiato, G. (2018). Eubiotics for Food Security at Farm Level: Yeast Cell Wall Products and Their Antimicrobial Potential Against Pathogenic Bacteria. Foodborne Pathogens and Disease, 16(9), 531–537.
[49] Seminario, S., & Cuenca, M. (2018). Brewer’s Yeast (Saccharomyces cerevisiae) in Broiler Chicken Feeding. Revista Electrónica de Veterinaria, 19(2), 1–10.
[50] Tellez, G., Nava, G.M., Vicente, J.L., De Frances, M., Morales, E.J., Prado, O., Terraes, J.C., & Hargis, B.M. (2010). Evaluation of Aspergillus Dietary Meal on Intestinal Morphometry of Turkey Poults. International Journal of Poultry Science, 9, 875–878.
[51] Toalombo, P., Vaca, M., Buenaño, R., & Maldonado, D. (2021). Saccharomyces cerevisiae (Brewer’s Yeast) on Zootechnical Parameters and Anatomical Morphometry of the Visceral Package in Broiler Chickens. Dominio de las Ciencias, 7(4), 1975–1992.
[52] Torres, C., & Zarazaga, M. (2002). Antibiotics as Growth Promoters in Animals. Are We on the Right Path? Gaceta Sanitaria, 16(2), 109–112.
[53] Torres, M., Zambrano, M., & Robalino, C. (2024). Effect of Probiotics on the Intestinal Tract of Broiler Chickens: A Systematic Review. Revista de Investigación en Ciencias Agronómicas y Veterinarias, 8(24), 1056–1071. https://doi.org/10.33996/revistaalfa.v8i24.323
[54] Uculmana, C. (2019, September). Factors Interfering in Poultry Production. Retrieved 7 March 2025, from https://actualidadavipecuaria.com/factores-que-interfieren-en-la-produccion-avicola/
[55] Vásconez, C., Hurtado, W., Tovar, J., Zambrano, R., & Molina, P. (2020). Enzyme Complexes as Feed Supplements in Broiler Chicken Diets. Journal of Science and Research, 5(4). https://doi.org/10.5281/zenodo.4118707
[56] Yin, Y., Liao, Y., Li, J., Pei, Z., Wang, L., Shi, Y., Peng, H., Tan, Y., Li, C., Bai, H., Ma, C., Gong, Y., Wie, T., & Peng, H. (2023). Lactobacillus plantarum GX17 Benefits Growth Performance and Improves Intestinal Barrier Functions/Intestinal Flora in Yellow-Feathered Broiler Chickens. Axón Vet, 20(12), 1–10.
[57] Zoghi, A., Todorov, S.D., & Khosravi, K. (2022). Potential Application of Probiotics in Reducing Mycotoxicosis in Mammals and Poultry. Critical Reviews in Toxicology, 52(9), 731–741. https://doi.org/10.1080/10408444.2023.2168176
[58] Zheng, M., Bai, Y., Sun, Y., An, J., Chen, Q., & Zhang, T. (2023). Effects of Different Proteases on In Vitro and In Vivo Protein Digestion and Growth Performance of Broilers Fed Corn–Soybean Meal Diets. Animals, 13(11), 1746. https://doi.org/10.3390/ani13111746
Published
2025-07-03
How to Cite
Andrade-Muyulema Erick, Ramírez-Gallardo Bismarck, & Cuenca-Condoy Mercy. (2025). Enzyme-Enhanced Symbiotics: A Sustainable Alternative to Antibiotic Growth Promoters in Broiler Chickens. Revista Electronica De Veterinaria, 26(1), 165-175. https://doi.org/10.69980/redvet.v26i1.2041