Regional Differences in Alveolar Bone Remodeling After Micro-Osteoperforations: A CBCT Comparison of Anterior Vs. Posterior Sites
Abstract
Background: Micro-osteoperforations (MOPs) have emerged as a clinically viable approach to accelerate orthodontic treatment through localized stimulation of bone remodeling. Despite widespread adoption, fundamental questions persist regarding region-specific biological responses to these interventions, particularly concerning differential remodeling kinetics between anterior and posterior jaw segments.
Objective: This study employed high-resolution cone-beam computed tomography (CBCT) to quantitatively compare trabecular bone remodeling patterns in anterior versus posterior alveolar regions following MOPs, with specific focus on bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) across multiple timepoints.
Methods: Thirty-two adults (18–35 years) undergoing bilateral premolar extractions participated in this randomized split-mouth trial. MOPs were administered to either anterior or posterior quadrants (randomized), with contralateral quadrants serving as controls. CBCT scans were acquired at baseline (T0), 4 weeks (T1), and 12 weeks (T2). Trabecular parameters were quantified using specialized 3D analysis software (CTAn®). Statistical analysis utilized repeated-measures ANOVA with Bonferroni correction.
Results: Significant time-by-region interactions occurred for all parameters (p<0.05). Anterior sites demonstrated rapid early bone loss (BV/TV: -12.6% at T1) followed by accelerated rebound (+5.9% by T2). Posterior sites exhibited delayed remodeling with persistent Tb.Th reduction (-11.1% at T1) and slower recovery. Temporal analysis revealed anterior changes peaked at 10.4 days versus 18.7 days posteriorly (p=0.008).
Conclusion: MOPs trigger distinct region-dependent remodeling kinetics: Anterior alveolar bone undergoes rapid, transient remodeling, while posterior bone demonstrates delayed, sustained responses. These findings necessitate region-specific clinical protocols to optimize orthodontic acceleration.
References
2. Sadowsky, C., Schneider, B. J., BeGole, E. A., & Tahir, E. (1994). Long-term stability after orthodontic treatment: nonextraction with prolonged retention.American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/S0889-5406(94)70043-5
3. Kotla, P., T., S., C, S., P., K. K., & R., N. (2020).Speedy orthodontics - Surgery first orthognathic approach. https://doi.org/10.18231/2455-6785.2018.0023
4. Faruqui, S., Fida, M., & Shaikh, A. (2018). Factors affecting treatment duration – a dilemma in orthodontics.Journal of Ayub Medical College Abbottabad.
5. Lopes, E. F., Ferrer, K. J. N., Almeida, M. H. C. de, & Almeida, R. C. de. (2008). Orthodontics as a support or core activity.Revista Dental Press De Ortodontia E Ortopedia Facial. https://doi.org/10.1590/S1415-54192008000600005
6. Tarraf, N. E., & Darendeliler, M. A. (2018). Present and the future of digital orthodontics.Seminars in Orthodontics. https://doi.org/10.1053/J.SODO.2018.10.002
7. Alikhani, M., Alikhani, M., Alansari, S., Sangsuwon, C., Alikhani, M., Chou, M. Y., Alyami, B., Nervina, J. M., & Teixeira, C. C. (2015). Micro-osteoperforations: Minimally invasive accelerated tooth movement.Seminars in Orthodontics. https://doi.org/10.1053/J.SODO.2015.06.002
8. Sangsuwon, C., Alansari, S., Nervina, J. M., Teixeira, C. C., Alikhani, M., & Alikhani, M. (2018).Micro-osteoperforations in accelerated orthodontics. https://doi.org/10.1007/S41894-017-0013-1
9. Mahmoudi, T. (2019). Accelerated Orthodontic Tooth Movement in Adult Patients by Micro-perforations of Cortical Bone.International Journal of Dentistry and Oral Health. https://doi.org/10.16966/2378-7090.281
10. Patil, S., Dodwad, V., Nichal, M., Mangalekar, S., Vhanmane, P., & Lulla, S. J. (2019).Micro-osteoperforations (Minimally Invasive Corticotomy Procedure for Accelerated Orthodontic Treatment): A Case Report. https://doi.org/10.5005/JP-JOURNALS-10042-1072
11. Li, Y., Jacox, L. A., Little, S. H., & Ko, C. C. (2018). Orthodontic tooth movement: The biology and clinical implications.Kaohsiung Journal of Medical Sciences. https://doi.org/10.1016/J.KJMS.2018.01.007
12. Verna, C., Dalstra, M., & Melsen, B. (2000). The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model.European Journal of Orthodontics. https://doi.org/10.1093/EJO/22.4.343
13. Al-Khalifa, K. S., & Baeshen, H. A. (2021). Micro-osteoperforations and Its Effect on the Rate of Tooth Movement: A Systematic Review.European Journal of Dentistry. https://doi.org/10.1055/S-0040-1713955
14. Rumin, K., Kawala, B., Lis, J., & Sarul, M. (2022). Effect of the minimally invasive micro-osteoperforations (MOPs) on the orthodontic tooth movement.Forum Ortodontyczne. https://doi.org/10.5114/for.2022.124683
15. Costa, A. (2002).Orthodontic device and assembly procedure.
16. Eini, E., Moradinejhad, M., Chaharmahali, R., & Rahim, F. (2022). The effect of micro-osteoperforations on the rate of orthodontic tooth movement in animal model: A systematic review and meta-analysis.Journal of Oral Biology and Craniofacial Research. https://doi.org/10.1016/j.jobcr.2022.09.015
17. Hassouna, Y., El Mehy, G., & Abd Elrazik Yousif, A. A. E. (2021).Relationship of anterior and posterior occlusal planes with different sagittal and vertical patterns in adults. https://doi.org/10.21608/ADJALEXU.2021.62490.1161
18. Sidorowicz, Ł., & Szymańska, J. (2015). The relationship between facial skeleton morphology and bite force in people with a normal relation of the bases of jaws and skull.Folia Morphologica. https://doi.org/10.5603/FM.2015.0115
19. Degidi, M., Scarano, A., Piattelli, M., Perrotti, V., & Piattelli, A. (2005). Bone remodeling in immediately loaded and unloaded titanium dental implants: a histologic and histomorphometric study in humans.Journal of Oral Implantology. https://doi.org/10.1563/0-717.1
20. Dunning, M. (2023). Influence of buccal and palatal bone thickness on post-surgical marginal bone changes around implants placed in posterior maxilla: a multi-centre prospective study.BMC Oral Health. https://doi.org/10.1186/s12903-023-02991-3
21. Faot, F., Faot, F., Chatterjee, M., Camargos, G. V., Camargos, G. V., Duyck, J., & Vandamme, K. (2015). Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review.Bone Reports. https://doi.org/10.1016/J.BONR.2014.10.005
22. Creuzet, S., Couly, G., Vincent, C., & Le Douarin, N. M. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.Development. https://doi.org/10.1242/DEV.129.18.4301
23. Weinreb, M., Patael, H., Preisler, O., & Ben-Shemen, S. (1997). Short-term healing kinetics of cortical and cancellous bone osteopenia induced by unloading during the reloading period in young rats.Virchows Archiv. https://doi.org/10.1007/S004280050122
24. Robinson, J. A., Chatterjee-Kishore, M., Yaworsky, P. J., Cullen, D. M., Zhao, W., Li, C., Kharode, Y. P., Sauter, L., Babij, P., Brown, E. L., Hill, A. A., Akhter, M. P., Johnson, M. L., Recker, R. R., Komm, B. S., & Bex, F. J. (2006). Wnt/β-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone.Journal of Biological Chemistry. https://doi.org/10.1074/JBC.M602308200
25. Alikhani, M., Alikhani, M., Sangsuwon, C., Alansari, S., Jearah, M. A., & Teixeira, C. C. (2017).Catabolic Effects of MOPs at Different Treatment Stages. https://doi.org/10.1007/978-3-319-43401-8_4
26. Wilcko, W. M., & Wilcko, M. T. (2013). Accelerating tooth movement: The case for corticotomy-induced orthodontics.American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/J.AJODO.2013.04.009
27. Shanker, S. S., Jayesh, S. R., & Hussain, S. (2015). Association of matrix metalloproteinase 1 gene promoter mutation and residual ridge resorption in edentulous patients of South Indian origin.Journal of Pharmacy and Bioallied Sciences. https://doi.org/10.4103/0975-7406.163591
28. Chen, T. L., & Bates, R. L. (2009). Recombinant human transforming growth factor β1 modulates bone remodeling in a mineralizing bone organ culture.Journal of Bone and Mineral Research. https://doi.org/10.1002/JBMR.5650080406
29. Lakatos, É., & Bojtár, I. (2012). Trabecular bone adaptation in a finite element frame model using load dependent fabric tensors.Mechanics of Materials. https://doi.org/10.1016/J.MECHMAT.2011.07.012
30. Narmada, I. B., & Syafei, A. (2008). The Role of Mechanical Force in Molecular and Cellular during Orthodontic Tooth Movement.Journal of Dentistry Indonesia. https://doi.org/10.14693/JDI.V15I3.30
31. Frost HM. The regional acceleratory phenomenon: A review. Henry Ford Hosp Med J. 1983;31(1):3-9.
32. Alikhani M, et al. Micro-osteoperforations: Minimally invasive accelerated tooth movement. Semin Orthod. 2015;21(3):162-169.
33. Gaêta-Araujo H, et al. Differences in trabecular bone microstructure in anterior and posterior regions of the human mandible using cone-beam CT. Sci Rep. 2021;11(1):10531.
34. Mavropoulos A, et al. Osteoclastogenesis during orthodontic tooth movement in a novel in vivo model. Bone. 2004;35(4):946-955.
35. Kitaura H, et al. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol. 2013;2013:181849.