Regional Differences in Alveolar Bone Remodeling After Micro-Osteoperforations: A CBCT Comparison of Anterior Vs. Posterior Sites

  • Dr. S.V. Paramesh Gowda
  • Dr. A. Sumathi Felicita
  • Dr. Shylashree. S
  • Dr. Anadha Gujar
Keywords: micro-osteoperforations, alveolar bone remodeling, CBCT, trabecular microarchitecture, orthodontic acceleration, regional bone biology

Abstract

Background: Micro-osteoperforations (MOPs) have emerged as a clinically viable approach to accelerate orthodontic treatment through localized stimulation of bone remodeling. Despite widespread adoption, fundamental questions persist regarding region-specific biological responses to these interventions, particularly concerning differential remodeling kinetics between anterior and posterior jaw segments.

Objective: This study employed high-resolution cone-beam computed tomography (CBCT) to quantitatively compare trabecular bone remodeling patterns in anterior versus posterior alveolar regions following MOPs, with specific focus on bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) across multiple timepoints.

Methods: Thirty-two adults (18–35 years) undergoing bilateral premolar extractions participated in this randomized split-mouth trial. MOPs were administered to either anterior or posterior quadrants (randomized), with contralateral quadrants serving as controls. CBCT scans were acquired at baseline (T0), 4 weeks (T1), and 12 weeks (T2). Trabecular parameters were quantified using specialized 3D analysis software (CTAn®). Statistical analysis utilized repeated-measures ANOVA with Bonferroni correction.

Results: Significant time-by-region interactions occurred for all parameters (p<0.05). Anterior sites demonstrated rapid early bone loss (BV/TV: -12.6% at T1) followed by accelerated rebound (+5.9% by T2). Posterior sites exhibited delayed remodeling with persistent Tb.Th reduction (-11.1% at T1) and slower recovery. Temporal analysis revealed anterior changes peaked at 10.4 days versus 18.7 days posteriorly (p=0.008).

Conclusion: MOPs trigger distinct region-dependent remodeling kinetics: Anterior alveolar bone undergoes rapid, transient remodeling, while posterior bone demonstrates delayed, sustained responses. These findings necessitate region-specific clinical protocols to optimize orthodontic acceleration.

Author Biographies

Dr. S.V. Paramesh Gowda

Phd Scholar, Department of orthodontics, Saveetha Dental College and Hospital, Chennai

Dr. A. Sumathi Felicita

Reader, Department of Orthodontics, Saveetha Dental College and Hospital, Chennai

Dr. Shylashree. S

PG Student, KVG Dental College and Hospital, Sullya, DK, Karnataka

Dr. Anadha Gujar

Reader, Department of Orthodontics, Sri Rajiv Gandhi College of Dental Sciences, Bangalore

References

1. Beckwith, F. R., Ackerman, R. J., Cobb, C. M., & Tira, D. E. (1999). An evaluation of factors affecting duration of orthodontic treatment.American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/S0889-5406(99)70265-9
2. Sadowsky, C., Schneider, B. J., BeGole, E. A., & Tahir, E. (1994). Long-term stability after orthodontic treatment: nonextraction with prolonged retention.American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/S0889-5406(94)70043-5
3. Kotla, P., T., S., C, S., P., K. K., & R., N. (2020).Speedy orthodontics - Surgery first orthognathic approach. https://doi.org/10.18231/2455-6785.2018.0023
4. Faruqui, S., Fida, M., & Shaikh, A. (2018). Factors affecting treatment duration – a dilemma in orthodontics.Journal of Ayub Medical College Abbottabad.
5. Lopes, E. F., Ferrer, K. J. N., Almeida, M. H. C. de, & Almeida, R. C. de. (2008). Orthodontics as a support or core activity.Revista Dental Press De Ortodontia E Ortopedia Facial. https://doi.org/10.1590/S1415-54192008000600005
6. Tarraf, N. E., & Darendeliler, M. A. (2018). Present and the future of digital orthodontics.Seminars in Orthodontics. https://doi.org/10.1053/J.SODO.2018.10.002
7. Alikhani, M., Alikhani, M., Alansari, S., Sangsuwon, C., Alikhani, M., Chou, M. Y., Alyami, B., Nervina, J. M., & Teixeira, C. C. (2015). Micro-osteoperforations: Minimally invasive accelerated tooth movement.Seminars in Orthodontics. https://doi.org/10.1053/J.SODO.2015.06.002
8. Sangsuwon, C., Alansari, S., Nervina, J. M., Teixeira, C. C., Alikhani, M., & Alikhani, M. (2018).Micro-osteoperforations in accelerated orthodontics. https://doi.org/10.1007/S41894-017-0013-1
9. Mahmoudi, T. (2019). Accelerated Orthodontic Tooth Movement in Adult Patients by Micro-perforations of Cortical Bone.International Journal of Dentistry and Oral Health. https://doi.org/10.16966/2378-7090.281
10. Patil, S., Dodwad, V., Nichal, M., Mangalekar, S., Vhanmane, P., & Lulla, S. J. (2019).Micro-osteoperforations (Minimally Invasive Corticotomy Procedure for Accelerated Orthodontic Treatment): A Case Report. https://doi.org/10.5005/JP-JOURNALS-10042-1072
11. Li, Y., Jacox, L. A., Little, S. H., & Ko, C. C. (2018). Orthodontic tooth movement: The biology and clinical implications.Kaohsiung Journal of Medical Sciences. https://doi.org/10.1016/J.KJMS.2018.01.007
12. Verna, C., Dalstra, M., & Melsen, B. (2000). The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model.European Journal of Orthodontics. https://doi.org/10.1093/EJO/22.4.343
13. Al-Khalifa, K. S., & Baeshen, H. A. (2021). Micro-osteoperforations and Its Effect on the Rate of Tooth Movement: A Systematic Review.European Journal of Dentistry. https://doi.org/10.1055/S-0040-1713955
14. Rumin, K., Kawala, B., Lis, J., & Sarul, M. (2022). Effect of the minimally invasive micro-osteoperforations (MOPs) on the orthodontic tooth movement.Forum Ortodontyczne. https://doi.org/10.5114/for.2022.124683
15. Costa, A. (2002).Orthodontic device and assembly procedure.
16. Eini, E., Moradinejhad, M., Chaharmahali, R., & Rahim, F. (2022). The effect of micro-osteoperforations on the rate of orthodontic tooth movement in animal model: A systematic review and meta-analysis.Journal of Oral Biology and Craniofacial Research. https://doi.org/10.1016/j.jobcr.2022.09.015
17. Hassouna, Y., El Mehy, G., & Abd Elrazik Yousif, A. A. E. (2021).Relationship of anterior and posterior occlusal planes with different sagittal and vertical patterns in adults. https://doi.org/10.21608/ADJALEXU.2021.62490.1161
18. Sidorowicz, Ł., & Szymańska, J. (2015). The relationship between facial skeleton morphology and bite force in people with a normal relation of the bases of jaws and skull.Folia Morphologica. https://doi.org/10.5603/FM.2015.0115
19. Degidi, M., Scarano, A., Piattelli, M., Perrotti, V., & Piattelli, A. (2005). Bone remodeling in immediately loaded and unloaded titanium dental implants: a histologic and histomorphometric study in humans.Journal of Oral Implantology. https://doi.org/10.1563/0-717.1
20. Dunning, M. (2023). Influence of buccal and palatal bone thickness on post-surgical marginal bone changes around implants placed in posterior maxilla: a multi-centre prospective study.BMC Oral Health. https://doi.org/10.1186/s12903-023-02991-3
21. Faot, F., Faot, F., Chatterjee, M., Camargos, G. V., Camargos, G. V., Duyck, J., & Vandamme, K. (2015). Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review.Bone Reports. https://doi.org/10.1016/J.BONR.2014.10.005
22. Creuzet, S., Couly, G., Vincent, C., & Le Douarin, N. M. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.Development. https://doi.org/10.1242/DEV.129.18.4301
23. Weinreb, M., Patael, H., Preisler, O., & Ben-Shemen, S. (1997). Short-term healing kinetics of cortical and cancellous bone osteopenia induced by unloading during the reloading period in young rats.Virchows Archiv. https://doi.org/10.1007/S004280050122
24. Robinson, J. A., Chatterjee-Kishore, M., Yaworsky, P. J., Cullen, D. M., Zhao, W., Li, C., Kharode, Y. P., Sauter, L., Babij, P., Brown, E. L., Hill, A. A., Akhter, M. P., Johnson, M. L., Recker, R. R., Komm, B. S., & Bex, F. J. (2006). Wnt/β-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone.Journal of Biological Chemistry. https://doi.org/10.1074/JBC.M602308200
25. Alikhani, M., Alikhani, M., Sangsuwon, C., Alansari, S., Jearah, M. A., & Teixeira, C. C. (2017).Catabolic Effects of MOPs at Different Treatment Stages. https://doi.org/10.1007/978-3-319-43401-8_4
26. Wilcko, W. M., & Wilcko, M. T. (2013). Accelerating tooth movement: The case for corticotomy-induced orthodontics.American Journal of Orthodontics and Dentofacial Orthopedics. https://doi.org/10.1016/J.AJODO.2013.04.009
27. Shanker, S. S., Jayesh, S. R., & Hussain, S. (2015). Association of matrix metalloproteinase 1 gene promoter mutation and residual ridge resorption in edentulous patients of South Indian origin.Journal of Pharmacy and Bioallied Sciences. https://doi.org/10.4103/0975-7406.163591
28. Chen, T. L., & Bates, R. L. (2009). Recombinant human transforming growth factor β1 modulates bone remodeling in a mineralizing bone organ culture.Journal of Bone and Mineral Research. https://doi.org/10.1002/JBMR.5650080406
29. Lakatos, É., & Bojtár, I. (2012). Trabecular bone adaptation in a finite element frame model using load dependent fabric tensors.Mechanics of Materials. https://doi.org/10.1016/J.MECHMAT.2011.07.012
30. Narmada, I. B., & Syafei, A. (2008). The Role of Mechanical Force in Molecular and Cellular during Orthodontic Tooth Movement.Journal of Dentistry Indonesia. https://doi.org/10.14693/JDI.V15I3.30
31. Frost HM. The regional acceleratory phenomenon: A review. Henry Ford Hosp Med J. 1983;31(1):3-9.
32. Alikhani M, et al. Micro-osteoperforations: Minimally invasive accelerated tooth movement. Semin Orthod. 2015;21(3):162-169.
33. Gaêta-Araujo H, et al. Differences in trabecular bone microstructure in anterior and posterior regions of the human mandible using cone-beam CT. Sci Rep. 2021;11(1):10531.
34. Mavropoulos A, et al. Osteoclastogenesis during orthodontic tooth movement in a novel in vivo model. Bone. 2004;35(4):946-955.
35. Kitaura H, et al. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol. 2013;2013:181849.
Published
2021-06-04
How to Cite
Dr. S.V. Paramesh Gowda, Dr. A. Sumathi Felicita, Dr. Shylashree. S, & Dr. Anadha Gujar. (2021). Regional Differences in Alveolar Bone Remodeling After Micro-Osteoperforations: A CBCT Comparison of Anterior Vs. Posterior Sites. Revista Electronica De Veterinaria, 63-70. https://doi.org/10.69980/redvet.vi.2056
Section
Articles