Water-borne kerosene as a stressor in the freshwater air-breathing fish, Anabas testudineus Bloch: Effects on interrenal and thyroidal activities

  • Babitha G.S
  • Leji j
  • Sajeenamuhamed S
Keywords: Anabas testudineus, Cortisol, Kerosene, T, andT

Abstract

The effects of water-soluble fraction of kerosene on thyroidal and interrenal activities were investigated in the climbing perch, Anabas testudineus. The fish exposed to the selected concentrations of kerosene (3.33 and 6.66 ml/L) for 48 h showed elevated plasma glucose (P<0.05)and plasma urea (P<0.01). The plasma T4 (P<0.01) increased and the plasma T3 (P<0.05) decreased in the kerosene-exposed fish and these changes were reversed in the fish kept for 96 h recovery after 48 h kerosene exposure. The plasma cortisol concentration increased (P<0.05) after kerosene treatment and its level increased further during recovery. Our results demonstrate that water-borne kerosene activates thyroid and interrenal axes. Evidence is also presented that cortisol is involved in the post-stress recovery phase of the kerosene-exposed climbing perch, thus support the hypothesis that cortisol is involved in the regulation of both stress induction and stress tolerance in fish.

Author Biographies

Babitha G.S

Sree Narayana College, Varkala, Thiruvananthapuram -695145

Leji j

Sree Narayana College, Varkala, Thiruvananthapuram -695145

Sajeenamuhamed S

Iqbal College, Peringammala, Thiruvananthapuram -695563

References

1. Akaishi, F.M., Silva de Assis, H.C., Jakobi, S.C.G., Eiras-Stofella, D.R., St-Jean, S.D., Courtenay, S.C., Lima, E.F., Wagener, A.L.R., Scofield, A.L., Oliveira Ribeiro, C.A., 2004. Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (wsf) of crude oil. Arch. Environ. Contam. Toxicol. 46, 244–253.
2. Alkindi, A.Y.A., Brown, J.A., Waring, C.P., Collins, J.E., 1996. Endocrine, osmoregulatory, respiratory and haematological parameters in flounder exposed to the water-soluble fraction of crude oil. J. Fish Biol. 49, 1291-1305.
3. Barton, B.A., Morgan, J.D., Vijayan, M.M., 2002. Physiological and condition-related indicators of environmental stress in fish. In: Adams, S.M. (Ed.), Biological indicators of aquatic ecosystem stress. American Fisheries Society, Bethesda, pp. 111–148.
4. Brauner, C.J., Ballantyne, C.L., Vijayan, M.M., Val, A.L., 1999. Crude oil affects air-breathing frequency, blood phosphate levels and ion regulation in an air-breathing teleost fish, Hoplosternumlittorale. Comp. Biochem. Physiol. 123C, 127-134.
5. Brown, J.A., 1993. Endocrine responses to environmental pollutants. In: Rankin, J.C., Jensen, F.B. (Eds.), Fish Ecophysiology. Chapman and Hall, London, pp. 276-296.
6. Brown, S.B., Maclatchy, D.L., Hara, T.J., Eales, J.G., 1990. Effects of low ambient pH and aluminium on plasma kinetics of cotisol, T3 and T4 in rainbow trout, Oncorhynchus mykiss. Can. J. Zool. 68, 1537-1543.
7. Brown, S.B., MacLatchy, D.L., Hara, T.J., Eales, J.G., 1991. Effects of cortisol on aspects of 3,5,3’-triiodo-L-thyronine metabolism in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 81, 207–216.
8. Collier, T.K., Krone, C.A., Krahn, M.G., Stain, J.E., Chan, S.L., Varanasi, U., 1996. Petroleum exposure and associated biochemical effects in subtidal fish after the Exon Valdez oil spill. Am. Fish Soc. Symp. 18, 671–683.
9. Dede, E.B., Igboh, N.M., Ayalogu, O.A., 2002. Chronic toxicity study of the effect of crude petroleum (Bonny Light), kerosene and gasoline on rats using haematological parameters. J. Appl. Sci. Environ. Manag. 6(1), 60-63.
10. Dede, E.B., Kaglo, H.D., 2001. Aqua-toxicological Effects of Water Soluble Fractions (WSF) Of Diesel Fuel OnO. Niloticus Fingerlings. J. Appl. Sci. Environ. Mgt. 5, 93-96.
11. Freitas J.S., Pereira T.S.B., Boscolo C.N.P., Garcia M.N., de Oliveira Ribeiro C.A., de Almeida E.A. 2020. Oxidative stress, biotransformation enzymes and histopathological alterations in Nile tilapia (Oreochromisniloticus) exposed to new and used automotive lubricant oil. Comp. Biochem. Physiol. C Toxicol. Pharmacol.;234.
12. Gavlik, S., Albino, M., Specker, J.L., 2002. Metamorphosis in summer flounder: manipulation of thyroid status to synchronize settling behaviour, growth, and development. Aquaculture. 203, 359-373.
13. Gurung S., Dubansky B., Virgen C.A., Verbeck G.F., Murphy D.W. 2021. Effects of crude oil vapors on the cardiovascular flow of embryonic Gulf killifish. Sci. Total Environ.;751
14. Hodson, P.V., Maj, M.K., Efler, S., Burnison, B.K., Van Heiningen, A.R.P., Girard, R., Carey, J.H., 1997. MFO induction in fish by spent cookink liquors from kraft pulp mills. Env. Toxicol. Chem. 16, 908-916.
15. Khatun M.H., Rahman M.L., Saha N., Suliaman M., Razzak M.A., Islam S.M.M. 2021. Behaviour and morphology pattern analysis of Indian major carps fingerlings exposed to commercial diesel oil suspension. Chem. Ecol.;37:437.
16. Kennedy, C.J., Farrell, A.P., 2005. Ion homeostasis and interrenal stress responses in juvenile Pacific herring, Clupeapallasi, exposed to the water-soluble fraction of crude oil. J. Exp. Mar. Biol. Ecol. 323(1), 43-56.
17. Laurent, P., Perry, S.F., 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmogairdneri. Cell Tissue Res. 259, 429–442.
18. Leji, J., Babitha, G.S., Rejitha, V., Ignatius, J., Peter, V.S., Oommen, O.V., Peter, M.C.S., 2007. Thyroidal and osmoregulatory responses in tilapia (Oreochromismossambicus) to the effluents of coconut husk retting. J. Endocrinol. Reprod. 11, 24-31.
19. Lin, H., Randall, D.J., 1993. H+ ATPase activity in crude homogenate of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J. Exp. Biol. 180, 163-174.
20. McCormick, S.D., 1995. Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Wood, C.M., Shuttleworth, T.J. (Eds.), Cellular and molecular approaches to fish ionic regulation. Vol 14. Academic Press, San Diego, pp. 285–315.
21. McCormick, S.D., 2001. Endocrine control of osmoregulation in teleost fish. Am. Zool.41, 781-794.
22. Mohr, F.C., Lasley, B., Bursian, S., 2008. Chronic oral exposure to bunker C fuel oil causes adrenal insufficiency in ranch mink (Mustela vison). Arch. Environ. Contam. Toxicol. 54(2), 337-347.
23. Noaksson, E., Linderoth, M., Bosveld, A.T., Balk, L., 2003. Altered steroid metabolism in several telosts species exposed to endocrine disrupting substances in refuse dump leachate. Gen. Comp. Endocrinol. 134, 273-284.
24. Oommen, O.V., Matty, A.J., 1991. The effects of thyroid hormones and starvation on hepatic mitochondrial nucleic acids of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 83, 468-472.
25. Oommen, O.V., Sunny, F., Smita, M., George, J.M., Sreejith, P., Beyo, R.S., Divya, L., Vijayasree, A.S., Manju, M., Johnson, C., Akbarsha, M.A., 2007. Endocrine regulation of metabolism, oxidative stress and reproduction: physiological implications of functional interactions. In: Maitra, S.K. (Ed.), Hormone biotechnology. Daya Publishing House, Delhi, pp. 320–345.
26. Peter, M.C.S., Anand, S.B., Peter, V.S., 2004. Stress tolerance in fenvalerate-exposed air-breathing perch: Thyroidal and ionoregulatory responses. Proc. Indian Env. Con. 294-298.
27. Peter, M.C.S., Lock, R.A.C. Wendelaar Bonga, S.E., 2000. Evidence for an osmoregulatory role of thyroid hormones in the freshwater Mozambique tilapia, Oreochromismossambicus. Gen. Comp. Endocrinol. 120, 157–167.
28. Peter, V.S., Joshua, E.K., WendelaarBonga, S.E., Peter, M.C.S., 2007. Metabolic and thyroidal response in air-breathing perch (Anabas testudineus) to water-borne kerosene. Gen. Comp. Endocrinol. 152, 198-205.
29. Peter, V.S., Peter, M.C.S., 2007. Influence of coconut husk retting effluent on metabolic, interrenal and thyroid functions in the air-breathing perch, Anabas testudineus Bloch. J. Endocrinol. Reprod. 11, 62-68.
30. Pickering, A.D., 1993. Endocrine-induced pathology in stressed salmonid fish. Fish. Res. 17, 35.
31. Randall, D.J., Perry, S.F., 1992. Catecholamine. In: Hoar, W.S., Randall, D.J., Farrell, T.P. (Eds.), Fish Physiology, Vol. XII B. Academic Press, New York, pp. 255.
32. Ray, A.K., Medda, A.K., 1976. Effect of thyroid hormones and analogues on ammonia and urea excretions in latafish (Ophiocephaluspunctatus). Gen. Comp. Endocrinol. 29, 190-197.
33. Redding, J.M., DeLuze, A., Leloup-Hatey, J., Leloup, J., 1986. Suppression of plasma thyroid hormone concentrations by cortisol in the european eel Anguilla anguilla. Comp. Biochem. Physiol. 83A, 409–413.
34. Sinha, N., Lal, B., Singh, T.P., 1991. Pesticides induced changes in circulating thyroidhormones in the freshwater catfish Clariasbatrachus. Comp. Biochem. Physiol. 100C, 107-110.
35. Sørhus E., Donald C.E., da Silva D., Thorsen A., Karlsen Ø., Meier S. 2021. Untangling mechanisms of crude oil toxicity: linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish. Sci. Total Environ.757
36. Stolte, E.H., de Mazon, A.F., Leon-Koosterziel, K.M., Jesiak, M., Bury, N.R., Sturm, A., Savelkoul, H.F.J., van Kemenade, B.M.L.V., Flik, G., 2008. Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio.J. Endocrinol. 198(2), 403-417.
37. Stott, G.G., 1980. Histopathological survey of male gonads of fish from petroleum production and control sites in the Gulf of Mexico. J. Fish Biol. 17, 593-602.
38. Teles, M., Oliveira, M., Pacheco, M., Santos, M.A., 2005. Endocrine and metabolic changes in Anguilla anguilla L. following exposure to beta-naphthoflavone-a microsomal enzyme inducer. Environ. Int. 31, 99-104.
39. Thomas, P., Rice, S.D., 1987. Effects of water soluble fraction of Cook Inlet crude oil on swimming performance and plasma cortisol in juvenile coho salmon, Oncorhynchuskistutch. Comp. Biochem. Physiol. 87, 177-180.
40. Tintos, A., Gesto, M., Miguez, J.M., Soengas, J.L., 2008. Beta-Naphthoflavone and benzo(a)pyrene treatment affect liver intermediary metabolism and plasma cortisol levels in rainbow trout Oncorhynchus mykiss.Ecotoxicol. Environ. Saf. 69(2), 180-186.
41. Val, A.L., Almeida-Val, V.M.F., 1999. Effects of crude oil on respiratory aspects of some fish species of the Amazon. In: Val, A.L., Almeida-Val, V.M.F. (Eds.), Biology of Tropical Fish, INPA, Manaus, pp. 277-291.
42. Vijayan, M.M., Moon, T.W., 1994. The stress-response and the plasma disappearance of corticosteroid and glucose in a marine teleost, the sea raven. Can. J. Zool. 72, 379-386.
43. Walsh, P.J., Mommesen, T.P., 2001. Evolutionary considerations of nitrogen metabolism and excretion. In: Wright, P.A., Anderson,P.M. (Eds.), Nitrogen excretion, Fish physiology series 20. Academic Press, New York, pp.1-6.
44. WendelaarBonga, S.E., 1997. The stress response in fish. Physiol. Rev. 77, 591–625.
45. Yadav, A.K., Singh, T.P., 1986. Effect of pesticides on circulating thyroid hormone levels in the freshwater catfish, Heteropneustesfossilis (Bloch). Env. Res. 39, 136-142.
46. Yamano, K., 2005. The role of thyroid hormone in fish development with reference to aquaculture. JARQ. 39(3), 161-168.
Published
2025-08-11
How to Cite
Babitha G.S, Leji j, & Sajeenamuhamed S. (2025). Water-borne kerosene as a stressor in the freshwater air-breathing fish, Anabas testudineus Bloch: Effects on interrenal and thyroidal activities. Revista Electronica De Veterinaria, 586-591. https://doi.org/10.69980/redvet.vi.2124
Section
Articles