Preterm Cell Death Prevention in Rats with Ischemic Post Conditioning: An Experimental Study

  • Mayur Porwal Associate Professor, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
  • Kavina Ganapathy Assistant Professor, Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Karnataka, India
  • Monika Singh Assistant Professor, Department of Ayurveda, Sanskriti University, Mathura, Uttar Pradesh, India
Keywords: Cerebral injury, Stroke, ischemic post conditioning, early cell death


Ischemic post conditioning, also known as Postcond, occurs during the early stages of reperfusion as a series of periodic disturbances in blood flow that alter the fluid dynamics of reperfusion. Recent studies have shown that Postcond mitigates the effects of cerebral ischemia/reperfusion (I/R) damage by reducing the size of infarcts. However, the causes of Postcond I/R degradation are not understood. The purpose of this study was to determine the efficacy of Postcond in preventing brain I/R damage in the presence of blocked cerebral arteries. After 60 minutes of occlusion, adults began reperfusion (post-conversion treatment). The size of the infarct and the patient's neurological status were both measured at 24 and 72 hours. The level of oxidative stress was measured using the malondialdehyde assay, and apoptosis-related proteins were identified using Western blotting. Postmortem therapy boosted protein expression but inhibited cyt c activation by decreasing cyt c levels in cytsol. Postcond treatment data suggest produced brain injury by reducing infarct sizes, oxidative stress, and neurologic scores.


McLeod, R., Rosenkrantz, T., & Fitch, R. H. (2022). Therapeutic Interventions in Rat Models of Preterm Hypoxic Ischemic Injury: Effects of Hypothermia, Caffeine, and the Influence of Sex. Life, 12(10), 1514.

Fu, C. H., Zhang, B. H., Fang, C. Z., Yan, C. X., Lai, F. F., Chen, S., & Wang, G. H. (2020). Long non-coding RNA CRNDE deteriorates intrauterine infection-induced neonatal brain injury. Molecular and cellular probes, 52, 101565.

Jinnai, M., Koning, G., Singh-Mallah, G., Jonsdotter, A., Leverin, A. L., Svedin, P., ... & Hagberg, H. (2020). A model of germinal matrix hemorrhage in preterm rat pups. Frontiers in Cellular Neuroscience, 14, 535320.

McNally, M. A., & Soul, J. S. (2019). Pharmacologic prevention and treatment of neonatal brain injury. Clinics in perinatology, 46(2), 311-325.

Wang, J., Zhu, P., Li, R., Ren, J., & Zhou, H. (2020). Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biology, 30, 101415.

Scheid, S., Goeller, M., Baar, W., Wollborn, J., Buerkle, H., Schlunck, G., ... & Ulbrich, F. (2022). Inhalation as well as Intravenous Administration of H2S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats’ Retina. International Journal of Molecular Sciences, 23(10), 5519.

Ruiz-Meana, M., Bou-Teen, D., Ferdinandy, P., Gyongyosi, M., Pesce, M., Perrino, C., ... & Madonna, R. (2020). Cardiomyocyte aging and cardioprotection: a consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 116(11), 1835-1849.

Bork, N. I., Kuret, A., Santos, M. C., Molina, C. E., Reiter, B., Reichenspurner, H., ... & Nikolaev, V. O. (2021). The rise of cGMP by partial phosphodiesterase-3A degradation enhances cardioprotection during hypoxia. Redox Biology, 48, 102179.

Xiong, W., Qu, Y., Chen, H., & Qian, J. (2019). Insight into long noncoding RNA–miRNA–mRNA axes in myocardial ischemia-reperfusion injury: the implications for mechanism and therapy. Epigenomics, 11(15), 1733-1748.

Caricati-Neto, A., Errante, P. R., & Menezes-Rodrigues, F. S. (2019). Recent advances in pharmacological and non-pharmacological strategies of cardioprotection. International journal of molecular sciences, 20(16), 4002.

Baud, O., & Saint-Faust, M. (2019). Neuroinflammation in the developing brain: risk factors, involvement of microglial cells, and implication for early anesthesia. Anesthesia & Analgesia, 128(4), 718-725.

Andreadou, I., Daiber, A., Baxter, G. F., Brizzi, M. F., Di Lisa, F., Kaludercic, N., ... & Ferdinandy, P. (2021). Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology and Medicine, 166, 33-52.

Reyes-Corral, M., Sola-Idígora, N., de la Puerta, R., Montaner, J., & Ybot-González, P. (2021). Nutraceuticals in the prevention of neonatal hypoxia–ischemia: a comprehensive review of their neuroprotective properties, mechanisms of action and future directions. International journal of molecular sciences, 22(5), 2524.

Zhang, Y., Liu, Q., Gao, K., Tian, B., Zhu, H., Liu, J., ... & Guo, C. (2023). Remote Ischemic Conditioning Relieves Necrotizing Enterocolitis Through the Regulation of Redox and Inflammation. Journal of Interferon & Cytokine Research, 43(5), 216-228.

Lan, X. B., Ni, Y. S., Liu, N., Wei, W., Liu, Y., Yang, J. M., ... & Yu, J. Q. (2023). Neuroprotective effects of oxymatrine on hypoxic–ischemic brain damage in neonatal rats by activating the Wnt/β-catenin pathway. Biomedicine & Pharmacotherapy, 159, 114266.

Zinni, M., Pansiot, J., Léger, P. L., El Kamouh, M., & Baud, O. (2021). Sildenafil-mediated neuroprotection from adult to neonatal brain injury: evidence, mechanisms, and future translation. Cells, 10(10), 2766.

Mishra, B., Sharma, S. K., & Lepcha, T. C. (2022). Ischemic Post Conditioning Prevents Preterm Cell Death in Rats. Revista Electronica de Veterinaria, 23(4), 41-46.

Albrecht, M., Zitta, K., Groenendaal, F., van Bel, F., & Peeters-Scholte, C. (2019). Neuroprotective strategies following perinatal hypoxia-ischemia: Aiming NOS. Free Radical Biology and Medicine, 142, 123-131.

Rauf, A., Shah, M., Yellon, D. M., & Davidson, S. M. (2019). Role of caspase 1 in ischemia/reperfusion injury of the myocardium. Journal of Cardiovascular Pharmacology, 74(3), 194-200.

Davidson, J. O., Gonzalez, F., Gressens, P., Gunn, A. J., Guidelines, N. B. S., & Publications Committee. (2021, October). Update on mechanisms of the pathophysiology of neonatal encephalopathy. In Seminars in Fetal and Neonatal Medicine (Vol. 26, No. 5, p. 101267). WB Saunders.

Skemiene, K., Rekuviene, E., Jekabsone, A., Cizas, P., Morkuniene, R., & Borutaite, V. (2020). Comparison of effects of metformin, phenformin, and inhibitors of mitochondrial complex I on mitochondrial permeability transition and ischemic brain injury. Biomolecules, 10(10), 1400.

Passera, S., Boccazzi, M., Bokobza, C., Faivre, V., Mosca, F., Van Steenwinckel, J., ... & Fleiss, B. (2021). Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochemical Pharmacology, 186, 114461.

Alam, P., Haile, B., Arif, M., Pandey, R., Rokvic, M., Nieman, M., ... & Kanisicak, O. (2019). Inhibition of senescence‐associated genes Rb1 and Meis2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post–myocardial infarction. Journal of the American Heart Association, 8(15), e012089.

Dong, Y., Kimura, Y., & Yaegashi, N. (2022). Amniotic LPS-Induced Apoptosis in the Fetal Brain Is Suppressed by Vaginal LPS Preconditioning but Is Promoted by Continuous Ischemic Reperfusion. International journal of molecular sciences, 23(3), 1787.

Jones, I. H., Tao, D., Vagdama, B., Orford, M., Eaton, S., Collins, J., & Hall, N. J. (2022). Remote ischaemic pre-conditioning reduces intestinal ischemia reperfusion injury in a newborn rat. Journal of Pediatric Surgery.

Lai, K., Song, X. L., Shi, H. S., Qi, X., Li, C. Y., Fang, J., ... & Yin, S. K. (2020). Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice. Science Translational Medicine, 12(530), eaax1337.

Tan, N., Xin, W., Huang, M., & Mao, Y. (2022). Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Frontiers in Neurology, 13, 1048113.

Koning, G., Leverin, A. L., Nair, S., Schwendimann, L., Ek, J., Carlsson, Y., ... & Hagberg, H. (2019). Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection. Journal of Cerebral Blood Flow & Metabolism, 39(6), 1038-1055.the heart and myocardial function. Cardiovascular Research, 116(11), 1835-1849.

How to Cite
Mayur Porwal, Kavina Ganapathy, & Monika Singh. (2023). Preterm Cell Death Prevention in Rats with Ischemic Post Conditioning: An Experimental Study. Revista Electronica De Veterinaria, 24(2), 47 - 58. Retrieved from