Genomic Outlining for Goat Wellness: Illuminating the Path to Illness Resilience

  • Manju bargavi SK, Anagha Mathad, Anushka Sharma
Keywords: Goat Wellness, Illness Resilience, Single Nucleotide Polymorphisms (SNPs), Livestock’s resilience

Abstract

In the cattle and agricultural sectors, goats are essential to the production of meat, milk and fiber. Animal breeders' main goal is to increase the value of their domestic cattle as much as possible. However, they are affected by a number of diseases that can seriously affect their general health and productivity. A comprehensive analysis of the genetic control of resilience and genetic variants related to illnesses such as “natural coccidiosis, intestinal nematode, peste des petits ruminants (PPR) and scrapie” is necessary to tackle this problem. Breeders can increase livestock's resilience to disease by taking the appropriate steps, which will increase profits in the end. It combines functional and quantitative genomics, makes use of epidemiological forecasts as well as collects vast amounts of data within and across breeds. The study identifies genetic variations through “single nucleotide polymorphisms (SNPs)," nucleotide insertions/deletions, gene rearrangements, duplications and copy number polymorphisms by utilizing modern genomic approaches. To gain insight into small ruminants' risk of disease, these variants will be examined for their effects on gene expression and protein function. The research seeks to establish a thorough comprehension of the way genetic factors impact vulnerability and resistance to diseases such as natural Coccidiosis, gastrointestinal nematode, PPR and Scrapie. According to the study, important genetic markers linked to disease resistance in small ruminants should be identified through the integrated genomic method.

References

Kuraz, B., Tesfaye, M. and Mekonenn, S., (2021). Climate change impacts on animal production and contribution of animal production sector to global climate change: A review. Agricultural Science Digest-A Research Journal, 41(4), pp.523-530. Doi: 10.18805/ag.D-344

Wheeler, D.A., Roberts, L.R. and Cancer Genome Atlas Research Network, (2017). Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 169(7), p.1327. Doi: 10.1016%2Fj.cell.2017.05.046

Bertolini, F., Servin, B., Talenti, A., Rochat, E., Kim, E.S., Oget, C., Palhière, I., Crisà, A., Catillo, G., Steri, R. and Amills, M., (2018). Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetics Selection Evolution, 50, pp.1-24. Doi: 10.1186/s12711-018-0421-y

Rexroad, C., Vallet, J., Matukumalli, L.K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., Cockett, N. and Ernst, C., (2019). Genome to phenome: improving animal health, production, and wellbeing–a new USDA blueprint for animal genome research 2018–2027. Frontiers in genetics, 10, p.327. Doi: 10.3389/fgene.2019.00327

Hartman, S., Ogilvie, A.E., Ingimundarson, J.H., Dugmore, A.J., Hambrecht, G. and McGovern, T.H., (2017). Medieval Iceland, Greenland, and the new human condition: a case study in integrated environmental humanities. Global and Planetary Change, 156, pp.123-139. Doi: 10.1016/j.gloplacha.2017.04.007

Rather, M.A., Shanaz, S., Ganai, N. and Hamadani, A., (2020). Status of farm animal genetic resources of Jammu and Kashmir-A Review. International Journal of Livestock Research, 10(4), p.27. Doi: 10.5455/ijlr.20200201065851

Wang, Y., Xiang, Y., Xin, V.W., Wang, X.W., Peng, X.C., Liu, X.Q., Wang, D., Li, N., Cheng, J.T., Lyv, Y.N. and Cui, S.Z., (2020). Dendritic cell biology and its role in tumor immunotherapy. Journal of hematology & oncology, 13(1), pp.1-18. Doi: 10.1186/s13045-020-00939-6

Ivy-Israel, N.M., Moore, C.E., Schwartz, T.S. and Ditchkoff, S.S., (2020). Characterization of two MHC II genes (DOB, DRB) in white-tailed deer (Odocoileus virginianus). BMC genetics, 21, pp.1-17. Doi: 10.1186/s12863-020-00889-5

Kumar, D., Sharma, S., Sharma, R., Pundir, S., Singh, V.K., Chaturvedi, D., Singh, B., Kumar, S. and Sharma, S., (2021). Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Scientific reports, 11(1), p.3572. Doi: 10.1038/s41598-021-80996-0

Pal, A. and Chakravarty, AK, (2020). Disease resistance for different livestock species. Genetics and breeding for disease resistance of livestock, p.271. Doi: 10.1016%2FB978-0-12-816406-8.00019-X

Arnaiz-Villena, A., Suarez-Trujillo, F., Juarez, I., Rodríguez-Sainz, C., Palacio-Gruber, J., Vaquero-Yuste, C., Molina-Alejandre, M., Fernández-Cruz, E. and Martin-Villa, J.M., (2022). Evolution and molecular interactions of major histocompatibility complex (MHC)-G,-E and-F genes. Cellular and Molecular Life Sciences, 79(8), p.464. Doi: 10.1007/s00018-022-04491-z

Mpofu, T.J., Nephawe, K.A. and Mtileni, B., (2022). Prevalence and resistance to gastrointestinal parasites in goats: A review. Veterinary World, 15(10), p.2442. Doi: 10.14202%2Fvetworld.2022.2442-2452

Etsay, K., Megbey, S. and Yohannes, H., (2020). Prevalence of sheep and goat coccidiosis in different districts of Tigray region, Ethiopia. Nigerian Journal of Animal Science, 22(3), pp.61-69.

Dey, A.R., Begum, N., Alim, M.A., Malakar, S., Islam, M.T. and Alam, M.Z., (2020). Gastrointestinal nematodes in goats in Bangladesh: A large-scale epidemiological study on the prevalence and risk factors. Parasite epidemiology and control, 9, p.e00146. Doi: 10.1016/j.parepi.2020.e00146

Szewc, M., De Waal, T. and Zintl, A., (2021). Biological methods for the control of gastrointestinal nematodes. The Veterinary Journal, 268, p.105602. Doi: 10.1016/j.tvjl.2020.105602

Melnychuk, V., Yevstafieva, V., Bakhur, T., Antipov, A. and Feshchenko, D., (2020). The prevalence of gastrointestinal nematodes in sheep (Ovis Aries) in the central andsouth-eastern regions of Ukraine. Turkish Journal of Veterinary & Animal Sciences, 44(5), pp.985-993. Doi: 10.3906/vet-2004-54

Gazoni, F.L., Adorno, F.C., Matte, F., Alves, A.J., Campagnoni, I.D.P., Urbano, T., Zampar, A., Boiago, M.M. and da Silva, A.S., (2020). Correlation between intestinal health and coccidiosis prevalence in broilers in Brazilian agroindustries. Parasitology international, 76, p.102027. Doi: 10.1016/j.parint.2019.102027

Chaudhari, A.A., Lee, Y. and Lillehoj, H.S., (2020). Beneficial effects of dietary supplementation of Bacillus strains on growth performance and gut health in chickens with mixed coccidiosis infection. Veterinary parasitology, 277, p.109009. Doi: 10.1016/j.vetpar.2019.109009

Kinimi, E., Odongo, S., Muyldermans, S., Kock, R. and Misinzo, G., (2020). Paradigm shift in the diagnosis of peste des petits ruminants: scoping review. Acta Veterinaria Scandinavica, 62(1), pp.1-14. Doi: 10.1186/s13028-020-0505-x

Mdetele, D.P., Komba, E., Seth, M.D., Misinzo, G., Kock, R. and Jones, B.A., (2021). Review of peste des petits ruminant’s occurrence and spread in Tanzania. Animals, 11(6), p.1698. Doi: 10.3390/ani11061698

Cassmann, E.D. and Greenlee, J.J., (2020). Pathogenesis, detection, and control of scrapie in sheep. American journal of veterinary research, 81(7), pp.600-614. Doi: 10.2460/ajvr.81.7.600

Taranukha, N., Bezgina, Y., Fedota, N., Gorchakov, E., Ozheredova, N., Stepanenko, E., Verevkina, M., Okrut, S., Svetlakova, E., Simonov, A. and Bagamaev, B., (2020). Ensuring food security and control of sheep and goat scrapie. In E3S Web of Conferences (Vol. 210, p. 06020). EDP Sciences. Doi: 10.1051/e3sconf/202021006020

Published
2024-01-01
How to Cite
Manju bargavi SK, Anagha Mathad, Anushka Sharma. (2024). Genomic Outlining for Goat Wellness: Illuminating the Path to Illness Resilience. Revista Electronica De Veterinaria, 24(3), 82-88. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/398
Section
Articles