A Dual Focus Approach: Unveiling Drug Consumption Patterns and AMR Reduction Strategies in India's Small Dairy Sector
Abstract
The production of livestock, especially dairy products, is crucial to the food and nutritional security of Indian communities. It boosts the nation's economy and provides wages for an enormous number of farmers. In India, antimicrobial resistance (AMR) microorganisms pose a major threat to public health, a country that consumes a great deal of antibiotics. The objectives of this study were to assess prior AMR-mitigation methods, highlight medication usage and animal health practices that can be contributing to the establishment and spread of AMR in the nation that discuss the Theory of Change (TOC) as a method for influencing the selection of alternatives. We identified activities in India that have the possibility of facilitating the development and dissemination of resistant antibiotics. We conducted a review of the literature using PubMed, Google Scholar and Google then summarized as well as reviewed the findings by categories. One thousand studies from three distinct sources were found after a thorough review of the literature. After rigorous screening and meeting qualifying standards, thirty papers were included in the final analysis. Inadequate infrastructure supports the delivery of services and animal disease surveillance is not as advanced. Services for animal health are provided by a number of entities. Farmers therefore, take care of their animals and seek consultation when an animal's condition becomes unresponsive to therapy. Antibiotics are employed when treating mastitis instances. There is little evidence of drug withdrawal periods and there have been reports of antibiotic-contaminated milk. This study addresses different medication usage and animal health behaviors that result in AMR and recommends that stakeholders engage in a TOC exercise to support treatments that prioritize animal health and investigate adoption incentives.
References
Kumar, N., Sharma, G., Leahy, E., Shome, B. R., Bandyopadhyay, S., Deka, R. P., .. & Lindahl, J. F. (2021). Understanding antibiotic usage on small-scale dairy farms in the Indian states of Assam and Haryana using a mixed-methods approach—outcomes and challenges. Antibiotics 2021; 10 (9): 1124. Doi: https://doi.org/10.3390/antibiotics10091124
McKernan, C., Benson, T., Farrell, S., & Dean, M. (2021). Antimicrobial use in agriculture: Critical review of the factors influencing behaviour. JAC-antimicrobial resistance, 3(4), dlab178. Doi: https://doi.org/10.1093/jacamr/dlab178
Paramasivam, R., Gopal, D. R., Dhandapani, R., Subbarayalu, R., Elangovan, M. P., Prabhu, B., ... & Muthupandian, S. (2023). Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infection and Drug Resistance, 155-178. Doi: https://doi.org/10.1093/jacamr/dlab178
Hosain, M. Z., Kabir, S. L., & Kamal, M. M. (2021). Antimicrobial uses for livestock production in developing countries. Veterinary World, 14(1), 210. Doi: https://doi.org/10.14202%2Fvetworld.2021.210-221
Bandyopadhyay, S., & Samanta, I. (2022). Antimicrobial resistance in livestock sector: Status and way forward. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases, 43(1), 34-41. Doi: http://dx.doi.org/10.5958/0974-0147.2022.00005.8
Doron, A., & Broom, A. (2021). Chicken curry in the time of COVID-19: The industry of bugs and drugs. Economic and Political Weekly.
Al Amin, M., Hoque, M. N., Siddiki, A. Z., Saha, S., & Kamal, M. M. (2020). Antimicrobial resistance situation in animal health of Bangladesh. Veterinary world, 13(12), 2713. Doi: https://doi.org/10.14202%2Fvetworld.2020.2713-2727
Sulis, G., Sayood, S., & Gandra, S. (2022). Antimicrobial resistance in low-and middle-income countries: current status and future directions. Expert review of anti-infective therapy, 20(2), 147-160. Doi: https://doi.org/10.1080/14787210.2021.1951705
Hedman, H. D., Vasco, K. A., & Zhang, L. (2020). A review of antimicrobial resistance in poultry farming within low-resource settings. Animals, 10(8), 1264. Doi: https://doi.org/10.3390/ani10081264
Mutua, F., Sharma, G., Grace, D., Bandyopadhyay, S., Shome, B., & Lindahl, J. (2020). A review of animal health and drug use practices in India, and their possible link to antimicrobial resistance. Antimicrobial Resistance & Infection Control, 9, 1-13. Doi: https://doi.org/10.1186/s13756-020-00760-3
Vidović, J., Stojanović, D., Cagnardi, P., Kladar, N., Horvat, O., Ćirković, I., ... & Kovačević, Z. (2022). Farm Animal Veterinarians’ Knowledge and Attitudes toward Antimicrobial Resistance and Antimicrobial Use in the Republic of Serbia. Antibiotics, 11(1), 64. Doi: https://doi.org/10.3390/antibiotics11010064
Pearson, M., & Chandler, C. (2019). Knowing antimicrobial resistance in practice: a multi-country qualitative study with human and animal healthcare professionals. Global health action, 12(sup1), 1599560. Doi: https://doi.org/10.1080/16549716.2019.1599560
Jadeja, N. B., & Worrich, A. (2022). From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environmental Microbiology, 24(8), 3290-3306. Doi: https://doi.org/10.1111/1462-2920.15927
Dankar, I., Hassan, H. F., & Serhan, M. (2023). Attitudes and practices on antibiotic use and its emerging threats among Lebanese dairy veterinarians: a case study from a developing country. Frontiers in Veterinary Science, 10, 1284656. Doi: https://doi.org/10.1111/1462-2920.15927
Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, N., Oono, K., Fujii, K., ... & Hayashi, T. (2020). Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Frontiers in Veterinary Science, 6, 504. Doi: https://doi.org/10.3389/fvets.2019.00504
Kher, M. N., Sheth, N. R., & Bhatt, V. D. (2019). In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Animal biotechnology, 30(2), 151-158. Doi: https://doi.org/10.1080/10495398.2018.1451752
Algharib, S. A., Dawood, A., & Xie, S. (2020). Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug delivery, 27(1), 292-308. Doi: https://doi.org/10.1080/10717544.2020.1724209
Kober, A. H., Saha, S., Islam, M. A., Rajoka, M. S. R., Fukuyama, K., Aso, H., ... & Kitazawa, H. (2022). Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms, 10(11), 2255. Doi: https://doi.org/10.3390/microorganisms10112255
Coatrini-Soares, A., Coatrini-Soares, J., Neto, M. P., de Mello, S. S., Pinto, D. D. S. C., Carvalho, W. A., ... & Mattoso, L. H. C. (2023). Microfluidic E-tongue to diagnose bovine mastitis with milk samples using Machine learning with Decision Tree models. Chemical Engineering Journal, 451, 138523. Doi: https://doi.org/10.1016/j.cej.2022.138523
Martins, S. A., Martins, V. C., Cardoso, F. A., Germano, J., Rodrigues, M., Duarte, C., ... & Freitas, P. P. (2019). Biosensors for on-farm diagnosis of mastitis. Frontiers in bioengineering and biotechnology, 7, 186. Doi: https://doi.org/10.3389/fbioe.2019.00186
Annamanedi, M., Sheela, P., Sundareshan, S., Isloor, S., Gupta, P., Jasmeen, P., ... & Hegde, N. R. (2021). Molecular fingerprinting of bovine mastitis-associated Staphylococcus aureus isolates from India. Scientific reports, 11(1), 15228. Doi: https://doi.org/10.1038/s41598-021-94760-x
Chakraborty, S., Dhama, K., Tiwari, R., Iqbal Yatoo, M., Khurana, S. K., Khandia, R., ... & Chaicumpa, W. (2019). Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population—a review. Veterinary Quarterly, 39(1), 76-94. Doi: https://doi.org/10.1080/01652176.2019.1642546
Nirala, N. R., Harel, Y., Lellouche, J. P., & Shtenberg, G. (2020). Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles. Journal of Nanobiotechnology, 18(1), 1-10. Doi: https://doi.org/10.1186/s12951-019-0569-9
Garcia, S. N., Osburn, B. I., & Cullor, J. S. (2019). A one health perspective on dairy production and dairy food safety. One Health, 7, 100086. Doi: https://doi.org/10.1016/j.onehlt.2019.100086
Yedluri, A. K., Kulurumotlakatla, D. K., Sangaraju, S., Obaidat, I. M., & Kim, H. J. (2020). Facile synthesis of novel and highly efficient CoNi2S4-Ni (OH) 2 nanosheet arrays as pseudocapacitive-type electrode material for high-performance electrochemical supercapacitors. Journal of Energy Storage, 31, 101623. Doi: https://doi.org/10.1016/j.est.2020.101623
Wilson, D., Materón, E. M., Ibáñez-Redín, G., Faria, R. C., Correa, D. S., & Oliveira Jr, O. N. (2019). Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta, 194, 611-618. Doi: https://doi.org/10.1016/j.talanta.2018.10.089
Cai, R., Zhang, Z., Chen, H., Tian, Y., & Zhou, N. (2021). A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on a triple-helix molecular switch. Sensors and Actuators B: Chemical, 326, 128842. Doi: https://doi.org/10.1016/j.snb.2020.128842
Lee, C. W., Chang, H. Y., Wu, J. K., & Tseng, F. G. (2019). Ultra-sensitive electrochemical detection of bacteremia enabled by redox-active gold nanoparticles (raGNPs) in a nano-sieving microfluidic system (NS-MFS). Biosensors and Bioelectronics, 133, 215-222. Doi: https://doi.org/10.1016/j.bios.2019.03.040
Sharun, K., Dhama, K., Tiwari, R., Gugjoo, M. B., Iqbal Yatoo, M., Patel, S. K., ... & Chaicumpa, W. (2021). Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly, 41(1), 107-136. Doi: https://doi.org/10.1080/01652176.2021.1882713
Yang, W. T., Ke, C. Y., Wu, W. T., Lee, R. P., & Tseng, Y. H. (2019). Effective treatment of bovine mastitis with an intramammary infusion of Angelica dahurica and Rheum officinale extracts. Evidence-Based Complementary and Alternative Medicine, 2019. Doi: https://doi.org/10.1155/2019/7242705