Biological Variables Contributing to Heat Stress in Dairy Cattle: Comprehensive Analysis

  • Kumud Saxena, A Rengarajan, Rakesh Kumar Yadav
Keywords: Dairy cattle, cows, heat stress (HS), biological variables, temperature.

Abstract

Heat stress (HS) is an imminent threat to the production well-being and sustainability of dairy farms. Recognizing the complex biological factors driving HS in dairy cattle is crucial for developing effective mitigation techniques as global temperature increases.The well-being of animals can be significantly impacted when dairy cattle are subjected to HSdue to the conditions. As the population of high milk-yielding production animals with increased metabolic activity continues to grow, the challenges in managing HS have reached unprecedented levels.The aim of this research was to examine the variations in the biological characteristics of dairy cows and determine which biological markers exhibit more reliability when it comes to verifying HS.Moreover, the research gathered the biological variables, which included heart rate (HR), respiration rate (RR), rectal temperature (RT), andserum hormones concentrations from 110 dairy cows and analyzed them for 30 Days.It is crucial to have a grasp of the biological variables that cause HS in dairy cattle to create management strategies that protect the animals, increase their productivity, and guarantee that dairy farming can continue even when the environment changes.Statistical analysis was used to analyze the data, the MIXED technique was used for mixed form equations to infer fixed and random effects. Exploring HS in dairy cattle's complex biological variables improves our understanding of physiological responses to elevated temperatures and enables the development of targeted interventions and precision management strategies to improve dairy herd resilience and well-being under changing climates.Since respiratory rate is the most adapted biological metric to HS, it is the greatest predictor of HS in dairy cattle.

References

Brito, L. F., Oliveira, H. R., Houlahan, K., Fonseca, P. A., Lam, S., Butty, A. M., ... &Schenkel, F. S. (2020). Genetic mechanisms underlying feed utilization and implementation of genomic selection for improved feed efficiency in dairy cattle. Canadian journal of animal science, 100(4), 587-604.Doi: 10.1139/cjas-2019-0193

Sammad, A., Wang, Y. J., Umer, S., Lirong, H., Khan, I., Khan, A., ...& Wang, Y. (2020). Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals, 10(5), 793. Doi: 10.3390/ani10050793

Worku, D., Hussen, J., De Matteis, G., Schusser, B., &Alhussien, M. N. (2023). Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Frontiers in Veterinary Science, 10. Doi: 10.3389%2Ffvets.2023.1151241

Idris, M., Uddin, J., Sullivan, M., McNeill, D. M., & Phillips, C. J. (2021). Non-invasive physiological indicators of heat stress in cattle. Animals, 11(1), 71. Doi:10.3390/ani11010071

Liu, J., Li, L., Chen, X., Lu, Y., & Wang, D. (2019). Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian-Australasian journal of animal sciences, 32(9), 1332. Doi:10.5713%2Fajas.18.0743

Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C., &Gaughan, J. B. (2019). The impact of heat load on cattle. Animals, 9(6), 322. Doi:10.3390/ani9060322

Islam, M. A., Lomax, S., Doughty, A., Islam, M. R., Jay, O., Thomson, P., & Clark, C. (2021). Automated monitoring of cattle heat stress and its mitigation. Frontiers in Animal Science, 2, 60.Doi:10.3389/fanim.2021.737213

Vieira, R., Louvandini, H., Barcellos, J., Martins, C. F., & McManus, C. (2022). Path and logistic analysis for heat tolerance in adapted breeds of cattle in Brazil. Livestock Science, 258, 104888. Doi:10.1016/j.livsci.2022.104888

Habimana, V., Nguluma, A. S., Nziku, Z. C., Ekine-Dzivenu, C. C., Morota, G., Mrode, R., &Chenyambuga, S. W. (2023). Heat stress effects on milk yield traits and metabolites and mitigation strategies for dairy cattle breeds reared in tropical and sub-tropical countries. Frontiers in Veterinary Science, 10. Doi:10.3389%2Ffvets.2023.1121499

Kondruchina, S. G., Semenov, V. G., Tyurin, V. G., Kuznetsov, A. F., Leontyev, L. B., Larionov, G. A., ... &Ivanova, E. N. (2021, December). Effect of immunoprophylaxis on reproduction function of highly productive cows. In IOP Conference Series: Earth and Environmental Science (Vol. 935, No. 1, p. 012037). IOP Publishing. Doi:10.1088/1755-1315/935/1/012037

Lukuyu, M. N., Gibson, J. P., Savage, D. B., Rao, E. J. O., Ndiwa, N., & Duncan, A. J. (2019). Farmers’ perceptions of dairy cattle breeds, breeding and feeding strategies: a case of smallholder dairy farmers in Western Kenya. East African Agricultural and Forestry Journal, 83(4), 351-367.Doi:10.1080/00128325.2019.1659215

Amamou, H., Beckers, Y., Mahouachi, M., &Hammami, H. (2019). Thermotolerance indicators related to production and physiological responses to heat stress of Holstein cows. Journal of thermal biology, 82, 90-98. Doi: 10.1016/j.jtherbio.2019.03.016

Fabris, T. F., Laporta, J., Skibiel, A. L., Corra, F. N., Senn, B. D., Wohlgemuth, S. E., & Dahl, G. E. (2019). Effect of heat stress during early, late, and entire dry periods on dairy cattle. Journal of Dairy Science, 102(6), 5647-5656. Doi:10.3168/jds.2018-15721

Becker, C. A., Aghalari, A., Marufuzzaman, M., & Stone, A. E. (2021). Predicting dairy cattle heat stress using machine learning techniques. Journal of Dairy Science, 104(1), 501-524. Doi:10.3168/jds.2020-18653

Foroushani, S., & Amon, T. (2022). Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology. International Journal of Biometeorology, 66(9), 1811-1827. Doi:10.1007/s00484-022-02321-2

Corazzin, M., Saccà, E., Lippe, G., Romanzin, A., Foletto, V., Da Borso, F., &Piasentier, E. (2020). Effect of heat stress on dairy cow performance and on the expression of protein metabolism genes in mammary cells. Animals, 10(11), 2124.Doi: 10.3390/ani10112124

Zeng, J., Cai, J., Wang, D., Liu, H., Sun, H., & Liu, J. (2023). Heat stress affects dairy cow health status through blood oxygen availability. Journal of Animal Science and Biotechnology, 14(1), 112. Doi: 10.1186/s40104-023-00915-3

Gernand, E., König, S., &Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of Dairy Science, 102(7), 6660-6671. Doi:10.3168/jds.2018-16011

Hempel, S., Menz, C., Pinto, S., Galán, E., Janke, D., Estellés, F., ...& Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios–uncertainties and potential impacts. Earth System Dynamics, 10(4), 859-884. Doi:10.5194/esd-10-859-2019

Tsai, Y. C., Hsu, J. T., Ding, S. T., Rustia, D. J. A., & Lin, T. T. (2020). Assessment of dairy cow heat stress by monitoring drinking behavior using an embedded imaging system. biosystems engineering, 199, 97-108. Doi:10.1016/j.biosystemseng.2020.03.013

Published
2024-01-01
How to Cite
Kumud Saxena, A Rengarajan, Rakesh Kumar Yadav. (2024). Biological Variables Contributing to Heat Stress in Dairy Cattle: Comprehensive Analysis. Revista Electronica De Veterinaria, 24(3), 139-148. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/404
Section
Articles