Antimicrobial Residues from Animal husbandry in Sewage and Sediment: a systematic review

  • Ashwani Rawat, Sanjeev Kumar Mandal, Preeti Naval
Keywords: Antimicrobial Residues, Environmental Impact, Livestock, management, Antimicrobial Sensitivity

Abstract

Assessing Antimicrobial residues in a variety of environmental and animal-related conditions, extensive study explores the complex nature of Antimicrobial residues. The collection, consisting of 650 papers, provides a thorough analysis of the levels of antibiotics in soil, water, livestock and products derived from animals. According to the first search until the final article selection, the steps of the systematic review are carefully navigated, as illustrated in the PRISMA flow diagram. The integration of eighteen further sources improves the analysis to expand and offers useful data, which is significant. The study goes more deeply and presents aggregated data on Antimicrobial residues, emphasizing the need of effective synthesis for understanding environmental effects. The research offers a thorough perspective through data summaries and visual aids, assisting in well-informed decision-making. An emphasis on preventing illness is evident in the treatment distribution study across livestock categories, highlighting the necessity for specialized health and production methods. Moreover, determining the sensitivity and resistance to antibiotics in both human and non-human populations is essential for promoting responsible Antimicrobial use and preventing the emergence of resistance. The importance-based categorization of materials improves the research even more by making it simpler to assign resources and set priorities across different categories. In overall, this research offers significant understanding of the intricate terrain around Antimicrobial residues, guiding sustainable management approaches along with public health and environmental protection tactics.

References

Guo, X., Feng, C., Gu, E., Tian, C., & Shen, Z. (2019). Spatial distribution, source apportionment and risk assessment of antibiotics in the surface water and sediments of the Yangtze Estuary. Science of the Total Environment, 671, 548-557. https://doi.org/10.1016/j.scitotenv.2019.03.393
Bombaywala, S., Mandpe, A., Paliya, S., & Kumar, S. (2021). Antimicrobial resistance in the environment: A critical insight on its occurrence, fate, and eco-toxicity. Environmental Science and Pollution Research, 28, 24889-24916. https://doi.org/10.1007/s11356-021-13143-x
Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313
Rashid, A., Mazhar, S. H., Zeng, Q., Kiki, C., Yu, C. P., & Sun, Q. (2020). Simultaneous analysis of multiclass Antimicrobial residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. Journal of chromatography B, 1145, 122103. https://doi.org/10.1016/j.jchromb.2020.122103
Kimera, Z. I., Mgaya, F. X., Mshana, S. E., Karimuribo, E. D., & Matee, M. I. (2021). Occurrence of extended spectrum beta lactamase (ESBL) producers, quinolone and carbapenem resistant Enterobacteriaceae isolated from environmental samples along Msimbazi River basin ecosystem in Tanzania. International Journal of Environmental Research and Public Health, 18(16), 8264. https://doi.org/10.3390/ijerph18168264
Kairigo, P., Ngumba, E., Sundberg, L. R., Gachanja, A., & Tuhkanen, T. (2020). Occurrence of antibiotics and risk of Antimicrobial resistance evolution in selected Kenyan wastewaters, surface waters and sediments. Science of The Total Environment, 720, 137580. https://doi.org/10.1016/j.scitotenv.2020.137580
Voigt, A. M., Ciorba, P., Döhla, M., Exner, M., Felder, C., Lenz-Plet, F., ... & Faerber, H. A. (2020). The investigation of Antimicrobial residues, Antimicrobial resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. International journal of hygiene and environmental health, 224, 113449. https://doi.org/10.1016/j.ijheh.2020.113449
Wang, L., Li, H., Dang, J., Guo, H., Zhu, Y. E., & Han, W. (2021). Occurrence, distribution, and partitioning of antibiotics in surface water and sediment in a typical tributary of Yellow River, China. Environmental Science and Pollution Research, 28, 28207-28221. https://doi.org/10.1007/s11356-021-12634-1
Kimera, Z. I., Mshana, S. E., Rweyemamu, M. M., Mboera, L. E., & Matee, M. I. (2020). Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrobial Resistance & Infection Control, 9, 1-12. https://doi.org/10.1186/s13756-020-0697-x
Milaković, M., Vestergaard, G., González-Plaza, J. J., Petrić, I., Kosić-Vukšić, J., Senta, I., ... & Udiković-Kolić, N. (2020). Effects of industrial effluents containing moderate levels of Antimicrobial mixtures on the abundance of Antimicrobial resistance genes and bacterial community composition in exposed creek sediments. Science of the Total Environment, 706, 136001. https://doi.org/10.1016/j.scitotenv.2019.136001
Pereira, A. R., Paranhos, A. G. D. O., de Aquino, S. F., & Silva, S. D. Q. (2021). Distribution of genetic elements associated with Antimicrobial resistance in treated and untreated animal husbandry waste and wastewater. Environmental Science and Pollution Research, 28, 26380-26403. https://doi.org/10.1007/s11356-021-13784-y
Lehmann, L., & Bloem, E. (2021). Antimicrobial residues in substrates and output materials from biogas plants–Implications for agriculture. Chemosphere, 278, 130425. https://doi.org/10.1016/j.chemosphere.2021.130425
Menz, J., Olsson, O., & Kümmerer, K. (2019). Antimicrobial residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?. Journal of hazardous materials, 379, 120807. https://doi.org/10.1016/j.jhazm at.2019.120807
Sivagami, K., Vignesh, V. J., Srinivasan, R., Divyapriya, G., & Nambi, I. M. (2020). Antimicrobial usage, residues and resistance genes from food animals to human and environment: An Indian scenario. Journal of Environmental Chemical Engineering, 8(1), 102221. https://doi.org/10.1016/j.jece.2018.02.029
Zhang, Y., Chen, H., Jing, L., & Teng, Y. (2020). Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Science of the total environment, 731, 139128. https://doi.org/10.1016/j.scitotenv.2020.139128
Huang, F., An, Z., Moran, M. J., & Liu, F. (2020). Recognition of typical Antimicrobial residues in environmental media related to groundwater in China (2009− 2019). Journal of Hazardous Materials, 399, 122813. https://doi.org/10.1016/j.jhazmat.2020.122813
Sabri, N., Schmitt, H., Van der Zaan, B., Gerritsen, H. W., Zuidema, T., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2020). Prevalence of antibiotics and Antimicrobial resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of environmental chemical engineering, 8(1), 102245. https://doi.org/10.1016/j.jece.2018.03.004
Li, D., Shao, H., Huo, Z., Xie, N., Gu, J., & Xu, G. (2021). Typical antibiotics in the receiving rivers of direct-discharge sources of sewage across Shanghai: Occurrence and source analysis. RSC advances, 11(35), 21579-21587. https://doi.org/10.1039/D1RA02510D
Vilca, F. Z., Galarza, N. C., Tejedo, J. R., Cuba, W. A. Z., Quiróz, C. N. C., & Tornisielo, V. L. (2021). Occurrence of residues of veterinary antibiotics in water, sediment and trout tissue (Oncorhynchus mykiss) in the southern area of Lake Titicaca, Peru. Journal of Great Lakes Research, 47(4), 1219-1227. https://doi.org/10.1016/j.jglr.2021.04.012
Van den Meersche, T., Rasschaert, G., Haesebrouck, F., Van Coillie, E., Herman, L., Van Weyenberg, S., ... & Heyndrickx, M. (2019). Presence and fate of Antimicrobial residues, Antimicrobial resistance genes and zoonotic bacteria during biological swine manure treatment. Ecotoxicology and environmental safety, 175, 29-38. https://doi.org/10.1016/j.ecoenv.2019.01.127
Pan, X., Chen, Z., Zhai, W., Dong, L., Lin, L., Li, Y., & Yang, Y. (2023). Distribution of antibiotic resistance genes in the sediments of Erhai Lake, Yunnan-Kweichow Plateau, China: Their linear relations with nonpoint source pollution discharges from 26 tributaries. Environmental Pollution, 316, 120471. https://doi.org/10.1016/j.envpol.2022.120471
Harrower, J., McNaughtan, M., Hunter, C., Hough, R., Zhang, Z., & Helwig, K. (2021). Chemical fate and partitioning behavior of antibiotics in the aquatic environment—a review. Environmental toxicology and chemistry, 40(12), 3275-3298. https://doi.org/10.1002/etc.5191
Han, Q. F., Zhao, S., Zhang, X. R., Wang, X. L., Song, C., & Wang, S. G. (2020). Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environment International, 138, 105551. https://doi.org/10.1016/j.envint.2020.105551
Al Salah, D. M. M., Laffite, A., & Poté, J. (2019). Occurrence of bacterial markers and antibiotic resistance genes in sub-Saharan rivers receiving animal farm wastewaters. Scientific Reports, 9(1), 14847. https://doi.org/10.1038/s41598-019-51421-4
Lu, P., Fang, Y., Barvor, J. B., Neth, N. L. K., Fan, N., Li, Z., & Cheng, J. (2019). Review of antibiotic pollution in the seven watersheds in China. Polish Journal of Environmental Studies, 28(6), 4045-4055. https://doi.org/10.15244/pjoes/99061
Peng, Q., Song, J., Li, X., Yuan, H., Liu, M., Duan, L., & Zuo, J. (2020). Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China. Environmental Pollution, 266, 115245. https://doi.org/10.1016/j.envpol.2020.115245
Ekwanzala, M. D., Lehutso, R. F., Kasonga, T. K., Dewar, J. B., & Momba, M. N. B. (2020). Environmental dissemination of selected antibiotics from hospital wastewater to the aquatic environment. Antibiotics, 9(7), 431. https://doi.org/10.3390/antibiotics9070431
Chen, L., Li, H., Liu, Y., Cui, Y., Li, Y., & Yang, Z. (2020). Distribution, residue level, sources, and phase partition of antibiotics in surface sediments from the inland river: a case study of the Xiangjiang River, south-central China. Environmental Science and Pollution Research, 27, 2273-2286. https://doi.org/10.1007/s11356-019-06833-0
Xie, H., Hao, H., Xu, N., Liang, X., Gao, D., Xu, Y., ... & Wong, M. (2019). Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment. Science of the total Environment, 659, 230-239. https://doi.org/10.1016/j.scitotenv.2018.12.222
Zhang, L., Bai, J., Zhang, K., Wang, Y., Xiao, R., Campos, M., ... & Jorquera, M. A. (2023). Occurrence, bioaccumulation and ecological risks of antibiotics in the water-plant-sediment systems in different functional areas of the largest shallow lake in North China: Impacts of river input and historical agricultural activities. Science of The Total Environment, 857, 159260. https://doi.org/10.1016/j.scitotenv.2022.159260
Wang, J., Wei, H., Zhou, X., Li, K., Wu, W., & Guo, M. (2019). Occurrence and risk assessment of antibiotics in the Xi'an section of the Weihe River, northwestern China. Marine Pollution Bulletin, 146, 794-800. https://doi.org/10.1016/j.marpolbul.2019.07.016
Chen, H., Bai, X., Li, Y., Jing, L., Chen, R., & Teng, Y. (2019). Characterization and source-tracking of antibiotic resistomes in the sediments of a peri-urban river. Science of The Total Environment, 679, 88-96. https://doi.org/10.1016/j.scitotenv.2019.05.063
Anh, H. Q., Le, T. P. Q., Da Le, N., Lu, X. X., Duong, T. T., Garnier, J., ... & Nguyen, T. A. H. (2021). Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Science of The Total Environment, 764, 142865. https://doi.org/10.1016/j.scitotenv.2020.142865
Chow, L. K., Ghaly, T. M., & Gillings, M. R. (2021). A survey of sub-inhibitory concentrations of antibiotics in the environment. Journal of Environmental Sciences, 99, 21-27. https://doi.org/10.1016/j.jes.2020.05.030
Fouz, N., Pangesti, K. N., Yasir, M., Al-Malki, A. L., Azhar, E. I., Hill-Cawthorne, G. A., & Abd El Ghany, M. (2020). The contribution of wastewater to the transmission of antimicrobial resistance in the environment: implications of mass gathering settings. Tropical medicine and infectious disease, 5(1), 33. https://doi.org/10.3390/tropicalmed5010033
Zou, M., Tian, W., Zhao, J., Chu, M., & Song, T. (2022). Quinolone antibiotics in sewage treatment plants with activated sludge treatment processes: a review on source, concentration and removal. Process Safety and Environmental Protection, 160, 116-129. https://doi.org/10.1016/j.psep.2022.02.013
Bombaywala, S., Dafale, N. A., Jha, V., Bajaj, A., & Purohit, H. J. (2021). Study of indiscriminate distribution of restrained antimicrobial resistome of different environmental niches. Environmental Science and Pollution Research, 28, 10780-10790. https://doi.org/10.1007/s11356-020-11318-6
Reichert, G., Hilgert, S., Alexander, J., de Azevedo, J. C. R., Morck, T., Fuchs, S., & Schwartz, T. (2021). Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality. Science of the Total Environment, 768, 144526. https://doi.org/10.1016/j.scitotenv.2020.144526
Published
2024-01-01
How to Cite
Ashwani Rawat, Sanjeev Kumar Mandal, Preeti Naval. (2024). Antimicrobial Residues from Animal husbandry in Sewage and Sediment: a systematic review. Revista Electronica De Veterinaria, 24(3), 482-494. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/475
Section
Articles