An Investigation of the Effects of Antibiotic Usage in Aquaculture on Destiny and Habits, Ecology, and Risk Analysis

  • Sriom, Inzimam ul Hassan, M N Nachappa
Keywords: antibiotic, aquaculture, Water System, Soil, animal husbandry

Abstract

Antibiotics have been an essential feature of animal farming and aquaculture since they appeared in experimentalsurroundings to address the increasing demand for animal-derived commodities. Aquaculture involves cultivating aquatic flora and fauna in controlled environments, serving as a top-notch provider of protein with elevated nutritional value. Consequently, Antibiotic Resistance Genes (ARGs) have evolved and spread extensively in the commercial farming of animals, which could harm the health of society. One Health provides a comprehensive analysis of livestock industry ARGs and mitigation measures. This review specifically delves into the human health risks linked to antibiotics and ARGs in cattle and aquaculture systems, aiming to elucidate the intricate interconnections of ARGs among animals, environments, and humans. Seafood Watch (SFW) addresses these issues by enforcing aquaculture rules, planning carefully, investing in research, policy coordination, and worldwide collaboration. The 15 articles were selected with great care and attention to detail according to PRISMA criteria. This review focuses on the following subjects: environmental impact, soil antibiotic entry and destiny, antibiotic use in aquaculture, antibiotic entry and fate in the water system, and assessing potential environmental risks. Ensuring a steady supply of safe aquatic goods for the expanding consumer market is the key to aquaculture's future. There needs to be increased financing for research into alternative marine health management systems and international regulatory and policy collaboration.

References

Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health, and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663.Doi:10.1111/raq.12344
Longo, S. B., Clark, B., York, R., & Jorgenson, A. K. (2019). Aquaculture and the displacement of fisheries capture. Conservation Biology, 33(4), 832-841. Doi:10.1111/cobi.13295
Rahman, A., Khan, M. N. A., & Kamal, R. S. (2021). Sources of off-flavor in pangasius catfish (Pangasianodonhypophthalmus) ponds. J Aquac Mar Biol, 10(3), 138-144.Doi:10.15406/jamb.2021.10.00315
Dawood, M. A., Koshio, S., & Esteban, M. Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 10(4), 950-974. Doi:10.1111/raq.12209
Pereira, W. A., Mendonça, C. M. N., Urquiza, A. V., Marteinsson, V. Þ., LeBlanc, J. G., Cotter, P. D., ... & Oliveira, R. P. (2022). Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms, 10(9), 1705. Doi:10.3390/microorganisms10091705
Kawsar, M. A., Alam, M. T., Pandit, D., Rahman, M. M., Mia, M., Talukdar, A., &Sumon, T. A. (2022). Status of disease prevalence, drugs, and antibiotics usage in pond-based aquaculture at Narsingdi district, Bangladesh: A major public health concern and strategic appraisal for mitigation. Heliyon, 8(3).Doi:10.1016/j.heliyon.2022.e09060
Okeke, E. S., Chukwudozie, K. I., Nyaruaba, R., Ita, R. E., Oladipo, A., Ejeromedoghene, O., ... & Okoye, C. O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research, 29(46), 69241-69274. Doi:10.1007/s11356-022-22319-y
Kraemer, S. A., Ramachandran, A., &Perron, G. G. (2019). Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms, 7(6), 180. Doi:10.3390/microorganisms7060180
Darabi, M., Majeed, H., Diehl, A., Norton, J., & Zhang, Y. (2021). A review of microplastics in aquatic sediments: occurrence, fate, transport, and ecological impact. Current Pollution Reports, 7, 40-53. Doi:10.1007/s40726-020-00171-3
Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environmental Science and Pollution Research, 1-22.Doi:10.1007/s11356-021-17825-4
Naudet, J., d’Orbcastel, E. R., Bouvier, T., Godreuil, S., Dyall, S., Bouvy, S., ...&Auguet, J. C. (2023). Identifying macroplasticpathobiomes and antibiotic resistance in a subtropical fish farm. Marine Pollution Bulletin, 194, 115267.Doi:10.1016/j.marpolbul.2023.115267
Thornber, K., Huso, D., Rahman, M. M., Biswas, H., Rahman, M. H., Brum, E., & Tyler, C. R. (2019). Raising awareness of antimicrobial resistance in rural aquaculture practice in Bangladesh through digital communications: a pilot study. Global health action, 12(sup1), 1734735.Doi:10.1080/16549716.2020.1734735
Chen, J., Sun, R., Pan, C., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43), 11908-11919.Doi:10.1021/acs.jafc.0c03996
Gwenzi, W., Musiyiwa, K., &Mangori, L. (2020). Sources, behavior and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. Journal of Environmental Chemical Engineering, 8(1), 102220.Doi:10.1016/j.jece.2018.02.028
Ma, P., Wu, Y., Jiang, W., Shao, N., Zhou, M., Chen, Y., ...& Liu, R. (2022). Biodegradable peptide polymers as alternatives to antibiotics used in aquaculture. Biomaterials Science, 10(15), 4193-4207.Doi:10.1039/D2BM00672C
Seong, H. J., Kim, J. J., Kim, T., Ahn, S. J., Rho, M., &Sul, W. J. (2021). A case study on the distribution of the environmental resistome in Korean shrimp farms. Ecotoxicology and Environmental Safety, 227, 112858.Doi:10.1016/j.ecoenv.2021.112858
Sargenti, M., Bartolacci, S., Luciani, A., Di Biagio, K., Baldini, M., Galarini, R., ...&Capuccella, M. (2020). Investigation of the correlation between the use of antibiotics in aquaculture systems and their detection in aquatic environments: a case study of the Nera river aquafarms in Italy. Sustainability, 12(12), 5176.Doi:10.3390/su12125176
Preena, P. G., Dharmaratnam, A., Raj, N. S., Raja, S. A., Nair, R. R., &Swaminathan, T. R. (2021). Antibiotic-resistant Enterobacteriaceae from diseased freshwater goldfish. Archives of Microbiology, 203(1), 219-231.Doi:10.1007/s00203-020-02021-8
Pepi, M., &Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. International journal of environmental research and public health, 18(11), 5723.Doi:10.3390/ijerph18115723
Suzuki, A., Nam, V. H., & Lee, G. (2023). Reducing antibiotics use among smallholders: experimental evidence from the shrimp aquaculture sector in Vietnam. Aquaculture, 572, 739478. Doi:10.1016/j.aquaculture.2023.739478
Xiao, Y., Liu, S., Gao, Y., Zhang, Y., Zhang, Q., & Li, X. (2022). Determination of antibiotic residues in aquaculture products by liquid chromatography-tandem mass spectrometry: Recent trends and developments from 2010 to 2020. Separations, 9(2), 35.Doi:10.3390/separations9020035
Han, Q. F., Zhao, S., Zhang, X. R., Wang, X. L., Song, C., & Wang, S. G. (2020). Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environment International, 138, 105551.Doi:10.1016/j.envint.2020.105551
Noor, N. N. M., Kamaruzaman, N. H., Al-Gheethi, A., Mohamed, R. M. S. R., & Hossain, M. S. (2023). Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review. Ain Shams Engineering Journal, 14(7), 101981.Doi:10.1016/j.asej.2022.101981
Choi, S., Sim, W., Jang, D., Yoon, Y., Ryu, J., Oh, J., ...& Lee, Y. (2020). Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. Journal of hazardous materials, 396, 122585.Doi:10.1016/j.jhazmat.2020.122585
Girijan, S. K., Paul, R., VJ, R. K., & Pillai, D. (2020). Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli. Science of The Total Environment, 748, 141538.Doi:10.1016/j.scitotenv.2020.141538
Song, Z., Zhang, X., Ngo, H. H., Guo, W., Wen, H., & Li, C. (2019). Occurrence, fate, and health risk assessment of 10 common antibiotics in two drinking water plants with different treatment processes. Science of the Total Environment, 674, 316-326.Doi:10.1016/j.scitotenv.2019.04.093
Klase, G., Lee, S., Liang, S., Kim, J., Zo, Y. G., & Lee, J. (2019). The microbiome and antibiotic resistance in integrated fish farm water: Implications of environmental public health. Science of the Total Environment, 649, 1491-1501.Doi:10.1016/j.scitotenv.2018.08.288
de la Casa-Resino, I., Empl, M. T., Villa, S., Kolar, B., Fabrega, J., Lillicrap, A. D., ... &Carapeto-García, R. (2021). Environmental risk assessment of veterinary medicinal products intended for European aquaculture: the need for developing a harmonized approach. Environmental Sciences Europe, 33, 1-17.Doi:10.1186/s12302-021-00509-8v
Taylor, P., & Reeder, R. (2020). Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agriculture and Bioscience, 1, 1-14.Doi:10.1186/s43170-020-00001-y
Hemamalini, N., Shanmugam, S. A., Kathirvelpandian, A., Deepak, A., Kaliyamurthi, V., & Suresh, E. (2022). A critical review on the antimicrobial resistance, antibiotic residue, and metagenomics‐assisted resistance gene detection in freshwater aquaculture environment. Aquaculture Research, 53(2), 344-366. Doi:10.1111/are.15601
Hossain, A., Habibullah-Al-Mamun, M., Nagano, I., Masunaga, S., Kitazawa, D., & Matsuda, H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environmental Science and Pollution Research, 1-22. Doi:10.1111/raq.12344
Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483-493. Doi:10.1016/j.envres.2018.11.040
Garvey, M. (2022). Antimicrobial Use in Animal Food Production. In Biodiversity, Functional Ecosystems and Sustainable Food Production (pp. 183-215). Cham: Springer International Publishing.Doi:10.1007/978-3-031-07434-9_6
Malik, H., Singh, R., Kaur, S., Dhaka, P., Bedi, J. S., Gill, J. P. S., &Gongal, G. (2023). Review of antibiotic use and resistance in food animal production in WHO South-East Asia Region. Journal of Infection and Public Health, 16, 172-182.Doi:10.1016/j.jiph.2023.11.002
Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health, and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663.Doi:10.1111/raq.12344
Preena, P. G., Dharmaratnam, A., Raj, N. S., Raja, S. A., Nair, R. R., &Swaminathan, T. R. (2021). Antibiotic-resistant Enterobacteriaceae from diseased freshwater goldfish. Archives of Microbiology, 203(1), 219-231.Doi:10.1007/s00203-020-02021-8
Schulz, P., Pajdak-Czaus, J., &Siwicki, A. K. (2022). In Vivo Bacteriophages’ Application for the Prevention and Therapy of Aquaculture Animals–Chosen Aspects. Animals, 12(10), 1233.doi:https://www.mdpi.com/2076-2615/12/10/1233#
Faruk, M. A. R., Shorna, H. K., &Anka, I. Z. (2021). Use and impact of veterinary drugs, antimicrobials, and supplements in fish health management. Journal of Advanced Veterinary and Animal Research, 8(1), 36. Doi:10.5455%2Fjavar.2021.h482
Rehman, A., Patrick, W. M., & Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. Journal of Medical Microbiology, 68(1), 1-10.Doi:10.1099/jmm.0.000873
He, L. X., He, L. Y., Gao, F. Z., Wu, D. L., Ye, P., Cheng, Y. X., ... & Ying, G. G. (2022). Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Science of the Total Environment, 808, 152042.Doi:10.1016/j.scitotenv.2021.152042
Published
2024-01-01
How to Cite
Sriom, Inzimam ul Hassan, M N Nachappa. (2024). An Investigation of the Effects of Antibiotic Usage in Aquaculture on Destiny and Habits, Ecology, and Risk Analysis. Revista Electronica De Veterinaria, 24(3), 495-504. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/476
Section
Articles