Arithmetic Sequential Graceful Labeling of Complete Bipartite Graph with Pendant Edges

  • P. Sumathi
  • G. Geetha Ramani
Keywords: Graceful labeling, Arithmetic sequential graceful labeling, Complete bipartite graph

Abstract

Let G be a simple, finite, connected, undirected, non-trivial graph with  vertices and  edges.  be the vertex set and  be the edge set of  Let  where a  and  is an injective function. If for each edge   defined by  is a bijective function then the function  is called arithmetic sequential graceful labeling. The graph with arithmetic sequential graceful labeling is called arithmetic sequential graceful graph. In this paper, we proved complete bipartite graph with pendant edges are arithmetic sequential graceful graph.

Author Biographies

P. Sumathi

Department of Mathematics, C. Kandaswami Naidu College for Men, Chennai, Tamil Nadu, India

G. Geetha Ramani

Department of Mathematics, New Prince Shri Bhavani College of Engineering and Technology, Chennai, Tamil Nadu, India. 

References

1. Gallian J A, “A dynamic survey of Graph labeling”, The Electronic Journal of Combinatorics, (2020), pp. 77-81.
2. Christian Barrientos, Graceful graphs with pendent edges., Australasian journal of combinatorics, volume 33(2005), page 99-107.
3. P. Sumathi , G. Geetha Ramani., Arithmetic Sequential Graceful Labeling on Complete Bipartite Graph, Mathematical Statistician and Engineering Applications Page Number: 1116-1126, Vol. 72 No. 1 (2023) ,ISSN: 2094-0343.
4. Rosa, A. (1967). On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966).
5. Sethuraman G. and Elumalai A. On graceful graphs: pendant edge extensions of a family of complete bipartite and complete tripartite graphs. Indian J. pure appl. Math, 32(9):1283–1296, 2001.
6. Bhoumik, S., Mitra S., Graceful Labeling of Pendant Edge Extension of Complete Bipartite Graph, International Journal of Mathematical Analysis, 8(58) pp. 2885– 2897, 2014.
7. Mitra, S., Bhoumik S., On Graceful Labeling Of 1-crown For Complete BipartiteGraph, International Journal of Computational and Applied Mathematics, 10(1)pp. 69–75, 201
8. J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in Mathematics. Springer, New York, 2008.
Published
2024-09-18
How to Cite
P. Sumathi, & G. Geetha Ramani. (2024). Arithmetic Sequential Graceful Labeling of Complete Bipartite Graph with Pendant Edges. Revista Electronica De Veterinaria, 25(1S), 942 - 947. https://doi.org/10.69980/redvet.v25i1S.931