The Class F of G Protein-Coupled Receptors: International Union of Basic and Clinical Pharmacology CXV

  • Joshi Ankur
  • Soni Priyanka
  • Khemani Purva
  • Malviya Neelesh
  • Malviya Sapna
  • Kharia Anil
Keywords: G protein-coupled receptor, Frizzleds, Smoothened, ligand recognition, IUPHAR, lipoglycoproteins

Abstract

There are ten Frizzleds (FZD1–10) and one Smoothened (SMO) G protein-coupled receptor (GPCR) in class F. Hedgehog (Hh) family morphogens acting on the transmembrane protein Patched indirectly activate SMO, while secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family bind and activate FZDs. An update is warranted due to the progress made in our knowledge of FZDs and SMO as molecular machines and dynamic transmembrane receptors in the fourteen years since the first-class F GPCR IUPHAR nomenclature report. Recent developments in molecular pharmacology and structural biology have shed light on the mechanisms of ligand identification, receptor activation, signal initiation, and signal specification, among other areas. In addition, class F GPCRs are still being worked on as potential therapeutic targets, and new methods and technologies including CRISP/Cas9 edited cell systems and genetically encoded biosensors have helped to improve the functional analysis of these receptors. Cryogenic electron microscopy and crystal structure analysis have advanced to the point that our understanding of structure-function correlations is rapidly expanding, which is fantastic news for the pharmaceutical industry. The intricacy of the WNT/FZD and Hh/SMO signaling pathways is still not completely understood, despite the advances.

A great deal of structural and functional information regarding the activation processes of Frizzleds and Smoothened has been uncovered in the last several years of research. The discovery expands our knowledge of the molecular mechanisms involved in ligand recognition, receptor activation, signal specification, and initiation, and it also opens up new avenues for the use of biologics and small molecule drugs in regenerative medicine and therapy by targeting class F GPCRs.

Author Biographies

Joshi Ankur

Modern Institute of Pharmaceutical Sciences, Modern Campus, Gram Alwasa, Sanwer Rd,Behind Rewti Range, Indore, Madhya Pradesh 453111, India

Soni Priyanka

Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India

Khemani Purva

Modern Institute of Pharmaceutical Sciences, Modern Campus, Gram Alwasa, Sanwer Rd,Behind Rewti Range, Indore, Madhya Pradesh 453111, India

Malviya Neelesh

Smriti College of Pharmaceutical Education, 4/1 Pipliya Kumar, MR-11, Dewas Naka Indore, Indore, Madhya Pradesh 452010, India

Malviya Sapna

Modern Institute of Pharmaceutical Sciences, Modern Campus, Gram Alwasa, Sanwer Rd,Behind Rewti Range, Indore, Madhya Pradesh 453111, India

Kharia Anil

Modern Institute of Pharmaceutical Sciences, Modern Campus, Gram Alwasa, Sanwer Rd,Behind Rewti Range, Indore, Madhya Pradesh 453111, India

References

1. Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, et al. (2023) The concise guide to pharmacology 2023/24: G protein-coupled receptors. Br J Pharmacol 180(Suppl 2):S23–S144.
2. America M, Bostaille N, Eubelen M, Martin M, Stainier DYR, and Vanhollebeke B (2022) An integrated model for Gpr124 function in Wnt7a/b signaling among vertebrates. Cell Rep 39:110902.
3. Angers S (2022) Frizzled does not get bent out of shape by Wnt. Sci Signal 15:eadd3535.
4. Arensdorf AM, Marada S, and Ogden SK (2016) Smoothened regulation: a tale of two signals. Trends Pharmacol Sci 37:62–72.
5. Arthofer E, Dijksterhuis J, Gratz L, Hot B, Kozielewicz P, Lauth M, Olofsson J, Petersen J, Polonio T, Schulte G, et al. (2023) Class Frizzled GPCRs in GtoPdb v.2023.1, in IUPHAR/BPS Guide to Pharmacology CITE 2023/1.
6. Arthofer E, Hot B, Petersen J, Strakova K, Jager S, Grundmann M, Kostenis E,Gutkind JS, and Schulte G (2016) WNT stimulation dissociates a Frizzled 4 inactive-state complex with Galpha12/13. Mol Pharmacol 90:447–459.
7. Arveseth CD, Happ JT, Hedeen DS, Zhu J-F, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL, et al. (2021) Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol 19:e3001191.
8. Atwoo SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao C, Chang ALS, et al. (2015) Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27:342–353.
9. Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbaza´n J, Murray F, Nitsche U, Janssen K-P, et al. (2015) Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. Elife 4:e07091.
10. Bang I, Kim HR, Beaven AH, Kim J, Ko S-B, Lee GR, Kan W, Lee H, Im W, Seok C, et al. (2018) Biophysical and functional characterization of Norrin signaling through Frizzled4. Proc Natl Acad Sci U S A 115:8787–8792.
11. Bryja V, Schambony A, Caja´nek L, Dominguez I, Arenas E, and Schulte G (2008) Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep 9:1244–1250.
12. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, et al. (2016) Structural basis of Smoothened regulation by its extracellular domains. Nature 535:517–522.
13. Carpenter B and Tate CG (2016) Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng Des Sel 29:583–594.
14. Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, et al. (2016) Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc Natl Acad Sci U S A 113:9304–9309.
15. Chang T-H, Hsieh F-L, Zebisch M, Harlos K, Elegheert J, and Jones EY (2015) Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. Elife 4:e06554.
16. Chen P, Tao L, Wang T, Zhang J, He A, Lam K-H, Liu Z, He X, Perry K, Dong M, et al. (2018a) Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360:664–669.
17. Chen Q, Iverson TM, and Gurevich VV (2018b) Structural basis of arrestin- dependent signal transduction. Trends Biochem Sci 43:412–423.
18. Cheng L, Al-Owais M, Covarrubias ML, Koch WJ, Manning DR, Peers C, and Riobo-Del Galdo NA (2018) Coupling of Smoothened to inhibitory G proteins reduces voltage-gated K(1) currents in cardiomyocytes and prolongs cardiac action potential duration. J Biol Chem 293:11022–11032.
19. Cho C, Smallwood PM, and Nathans J (2017) Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:1056–1073 e1055.
20. Clevers H and Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205.
21. Colozza G and Koo B-K (2021) Wnt/beta-catenin signaling: structure, assembly and endocytosis of the signalosome. Dev Growth Differ 63:199–218.
22. Colozza G, Lee H, Merenda A, Wu S-HS, Catala`-Bordes A, Radaszkiewicz TW, Jordens I, Lee J-H, Bamford A-D, Farnhammer F, et al. (2023) Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2. Sci Adv 9:eadh9673.
23. Corda G and Sala A (2017) Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis 6:e364.
24. Daskalopoulos EP, Hermans KCM, Debets J, Strzelecka A, Leenders P, Vervoort- Peters L, Janssen BJA, and Blankesteijn WM (2019) The beneficial effects of UM206 on wound healing after myocardial infarction in mice are lost in follow- up experiments. Front Cardiovasc Med 6:118.
25. Davidson G (2021) LRPs in WNT signalling. Handb Exp Pharmacol 269:45–73. Davis SL, Cardin DB, Shahda S, Lenz H-J, Dotan E, O’Neil BH, Kapoun AM,
26. Stagg RJ, Berlin J, Messersmith WA, et al. (2020) A phase 1b dose escalation study of Wnt pathway inhibitor vantictumab in combination with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic pancreatic cancer. Invest New Drugs 38:821–830.
27. De Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, et al. (2024) Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 59:244–261 e246.
28. De Man SMA and van Amerongen R (2021) Zooming in on the WNT/CTNNB1 destruction complex: functional mechanistic details with implications for therapeutic targeting. Handb Exp Pharmacol 269:137–173.
29. DeBruine ZJ, Ke J, Harikumar KG, Gu X, Borowsky P, Williams BO, Xu W, Miller LJ, Xu HE, and Melcher K (2017a) Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization. Genes Dev 31:916–926.
30. DeBruine ZJ, Xu HE, and Melcher K (2017b) Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane. Br J Pharmacol 174:4564–4574
31. Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, Latorraca NR, Faust B, Dror RO, Beachy PA, et al. (2019) Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 571:284–288.
32. Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O’Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al. (2020) Phase Ib clinical trial of the anti- frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat 184:53–62.
33. Dijksterhuis JP, Baljinnyam B, Stanger K, Sercan HO, Ji Y, Andres O, Rubin JS, Hannoush RN, and Schulte G (2015) Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J Biol Chem 290:6789–6798.
34. Ding J, Lee S-J, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, et al. (2023) Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD(4)-selective WNT surrogate in mice. Nat Commun 14:2947.
35. Do M, Wu CCN, Sonavane PR, Juarez EF, Adams SR, Ross J, Rodriguez Y Baena A, Patel C, Mesirov JP, Carson DA, et al. (2022) A FZD7-specific antibody-drug conjugate induces ovarian tumor regression in preclinical models. Mol Cancer Ther 21:113–124.
36. Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, et al. (2021) Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598:688–692.
37. Eckert AF, Gao P, Wesslowski J, Wang X, Rath J, Nienhaus K, Davidson G, and Nienhaus GU (2020) Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy. Elife 9:e55286.
38. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D, Stainier DYR, et al. (2018) A molecular mechanism for Wnt ligand-specific signaling. Science 361:eaat1178.
39. Fradkin LG, Dura J-M, and Noordermeer JN (2010) Ryks: new partners for Wnts in the developing and regenerating nervous system. Trends Neurosci 33:84–92.
40. Gal M, Levanon EY, Hujeirat Y, Khayat M, Pe’er J, and Shalev S (2014) Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability. American J of Med Genetics Pt A 164:2996–3002.
41. Gammons MV, Renko M, Johnson CM, Rutherford TJ, and Bienz M (2016a) Wnt signalosome assembly by DEP domain swapping of Dishevelled. Mol Cell 64:92–104.
42. Gammons MV, Rutherford TJ, Steinhart Z, Angers S, and Bienz M (2016b) Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell- based complementation assay. J Cell Sci 129:3892–3902.
43. Gayen S, Li Q, Kim YM, and Kang C (2013) Structure of the C-terminal region of the Frizzled receptor 1 in detergent micelles. Molecules 18:8579–8590.
44. Generoso SF, Giustiniano M, La Regina G, Bottone S, Passacantilli S, Di Maro S, Cassese H, Bruno A, Mallardo M, Dentice M, et al. (2015) Pharmacological folding chaperones act as allosteric ligands of Frizzled4. Nat Chem Biol 11:280–286.
45. Grainger S and Willert K (2018) Mechanisms of Wnt signaling and control. Wiley Interdiscip Rev Syst Biol Med 10:e1422.
46. Gratz L, Kowalski-Jahn M, Scharf MM, Kozielewicz P, Jahn M, Bous J, Lambert NA, Gloriam DE, and Schulte G (2023a) Pathway selectivity in Frizzleds is achieved by conserved micro-switches defining pathway-determining, active conformations. Nat Commun 14:4573.
47. Gratz L, Sajkowska-Kozielewicz JJ, Wesslowski J, Kinsolving J, Bridge LJ, Petzold K, Davidson G, Schulte G, and Kozielewicz P (2023b) NanoBiT- and NanoBiT/ BRET-based assays allow the analysis of binding kinetics of Wnt-3a to endogenous Frizzled 7 in a colorectal cancer model. Br J Pharmacol DOI: 10.1111/bph.16090 [published ahead of print].
48. Guo X, Riobo-Del Galdo NA, Kim EJ, Grant GR, and Manning DR (2018) Overlap in signaling between Smoothened and the alpha subunit of the heterotrimeric G protein G13. PLoS One 13:e0197442.
49. Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al. (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 109:11717–11722.
50. Han S, Sun J, Yang L, and Qi M (2020) Role of NDP- and FZD4-related novel mutations identified in patients with FEVR in norrin/beta-catenin signaling pathway. Biomed Res Int 2020:7681926.
51. Hao H-X, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, et al. (2012) ZNRF3 promotes Wnt receptor turnover in an R-spondin- sensitive manner. Nature 485:195–200.
52. Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, Zhang J, Hedeen DS, Zhu J-F, Capener JL, et al. (2022) A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol 29:990–999.
53. Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB, Bouvier M, Babu MM, and Gloriam DE (2021) GPCR activation mechanisms across classes and macro/microscales. Nat Struct Mol Biol 28:879–888.
54. Hirai H, Matoba K, Mihara E, Arimori T, and Takagi J (2019) Crystal structure of a mammalian Wnt-frizzled complex. Nat Struct Mol Biol 26:372–379.
55. Hisano Y, Kono M, Cartier A, Engelbrecht E, Kano K, Kawakami K, Xiong Y, Piao W, Galvani S, Yanagida K, et al. (2019) Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. J Exp Med 216:1582–1598.
56. Ho Wei L, Arastoo M, Georgiou I, Manning DR, and Riobo-Del Galdo NA (2018) Activation of the Gi protein-RHOA axis by non-canonical Hedgehog signaling is independent of primary cilia. PLoS One 13:e0203170.
57. Hoffmann C, Gaietta G, Zurn A, Adams SR, Terrillon S, Ellisman MH, Tsien RY, and Lohse MJ (2010) Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc 5:1666–1677.
58. Hua ZL, Chang H, Wang Y, Smallwood PM, and Nathans J (2014) Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance. Development 141:3944–3954.
59. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, and Salic A (2016) Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell 166:1176–1187.e14.
60. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, and Salic A (2018) Structural basis of Smoothened activation in hedgehog signaling. Cell 174:312–324.e16.
61. Humphries AC and Mlodzik M (2018) From instruction to output: Wnt/PCP signaling in development and cancer. Curr Opin Cell Biol 51:110–116.
62. Ishida-Takagishi M, Enomoto A, Asai N, Ushida K, Watanabe T, Hashimoto T, Kato T, Weng L, Matsumoto S, Asai M, et al. (2012) The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun 3:859.
63. Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, et al. (2017) Surrogate Wnt agonists that phenocopy canonical Wnt and beta-catenin signalling. Nature 545:234–237.
64. Janda CY and Garcia KC (2015) Wnt acylation and its functional implication in Wnt signalling regulation. Biochem Soc Trans 43:211–216.
65. Janda CY, Waghray D, Levin AM, Thomas C, and Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64.
66. Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, et al. (2024) Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 187:1527–1546.e25.

67. Jiang X, Charlat O, Zamponi R, Yang Y, and Cong F (2015) Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 58:522–533.
68. Jiang X, Hao H-X, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al. (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110:12649–12654.
69. Katanaev VL, Blagodatski A, Xu J, Khotimchenko Y, and Koval A (2021) Mining natural compounds to target WNT signaling: land and sea tales. Handb Exp Pharmacol 269:215–248.
70. Ke J, Harikumar KG, Erice C, Chen C, Gu X, Wang L, Parker N, Cheng Z, Xu W, Williams BO, et al. (2013) Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex. Genes Dev 27:2305–2319.
71. Kilander MBC, Dahlstrom J, and Schulte G (2014a) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT- Frizzled selectivity. Cell Signal 26:1943–1949.
72. Kilander MBC, Petersen J, Andressen KW, Ganji RS, Levy FO, Schuster J, Dahl N, Bryja V, and Schulte G (2014b) Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6. FASEB J 28:2293–2305.
73. Kim G-H, Her J-H, and Han J-K (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182:1073–1082.
74. Kinnebrew M, Luchetti G, Sircar R, Frigui S, Viti LV, Naito T, Beckert F, Saheki Y, Siebold C, Radhakrishnan A, et al. (2021) Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. Elife 10:e70504.
75. Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S, Luchetti G, Sircar R, Nachtergaele S, Mydock-McGrane L, Krishnan K, et al. (2022) Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine- rich domain. Sci Adv 8:eabm5563.
76. Kinsolving J, Bous J, Kozielewicz P, Koˇsenina S, Shekhani R, Gratz L, Masuyer G, Wang Y, Stenmark P, Dong M, et al. (2024) Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD(7). Cell Rep 43:113727.
77. Ko S-B, Mihara E, Park Y, Roh K, Kang C, Takagi J, Bang I, and Choi H-J (2022) Functional role of the Frizzled linker domain in the Wnt signaling pathway. Commun Biol 5:421.
78. Kong JH, Siebold C, and Rohatgi R (2019) Biochemical mechanisms of vertebrate hedgehog signaling. Development 146:dev166892.
79. Koo B-K, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJR, Maurice MM, et al. (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–669.
80. Kowalski-Jahn M, Schihada H, and Schulte G (2023) Conformational GPCR BRET sensors based on bioorthogonal labeling of noncanonical amino acids. Methods Mol Biol 2676:201–213.
81. Kowalski-Jahn M, Schihada H, Turku A, Huber T, Sakmar TP, and Schulte G (2021) Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. Sci Adv 7:eabj7917.
82. Kowatsch C, Woolley RE, Kinnebrew M, Rohatgi R, and Siebold C (2019) Structures of vertebrate Patched and Smoothened reveal intimate links between cholesterol and Hedgehog signalling. Curr Opin Struct Biol 57:204–214.
83. Kozielewicz P, Bowin C-F, Turku A, and Schulte G (2020a) A NanoBRET-based binding assay for Smoothened allows real-time analysis of ligand binding and distinction of two binding sites for BODIPY-cyclopamine. Mol Pharmacol 97:23–34.
84. Kozielewicz P, Schihada H, and Schulte G (2021a) Employing genetically encoded, biophysical sensors to understand WNT/Frizzled interaction and receptor complex activation. Handb Exp Pharmacol 269:101–115.
85. Kozielewicz P and Schulte G (2022) NanoBRET and NanoBiT/BRET-based ligand binding assays permit quantitative assessment of small molecule ligand binding to Smoothened. Methods Mol Biol 2374:195–204.
86. Kozielewicz P, Turku A, Bowin C-F, Petersen J, Valnohova J, Can~izal MCA, Ono Y, Inoue A, Hoffmann C, and Schulte G (2020b) Structural insight into small molecule action on Frizzleds. Nat Commun 11:414.
87. Kozielewicz P, Turku A, and Schulte G (2020c) Molecular pharmacology of class F receptor activation. Mol Pharmacol 97:62–71.
88. Laeremans H, Hackeng TM, van Zandvoort MAMJ, Thijssen VLJL, Janssen BJA, Ottenheijm HCJ, Smits JFM, and Blankesteijn WM (2011) Blocking of Frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124:1626–1635.
89. Le V, Abdelmessih G, Dailey WA, Pinnock C, Jobczyk V, Rashingkar R, Drenser KA, and Mitton KP (2023) Mechanisms underlying rare inherited pediatric retinal vascular diseases: FEVR, Norrie disease, persistent fetal vascular syndrome. Cells 12:2579.
90. Liem KF, He M, Ocbina PJR, and Anderson KV (2009) Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A 106:13377–13382.
91. Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles P-Y, Gauthier C, Lee M-H, Pani B, et al. (2018) Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 11:eaat7650.
92. Maharana J, Banerjee R, Yadav MK, Sarma P, and Shukla AK (2022) Emerging structural insights into GPCR-beta-arrestin interaction and functional outcomes. Curr Opin Struct Biol 75:102406.
93. Mahoney JP, Bruguera ES, Vasishtha M, Killingsworth LB, Kyaw S, and Weis WI (2022) PI(4,5)P2-stimulated positive feedback drives the recruitment of Dishevelled to Frizzled in Wnt–b-catenin signaling. Sci Signal 15:eabo2820.
94. Malbon CC (2011) Wnt signalling: the case of the “missing” G-protein. Biochem J 434:575.e3–e5.
95. Manion J, Musser MA, Kuziel GA, Liu M, Shepherd A, Wang S, Lee P-G, Zhao L, Zhang J, Marreddy RKR, et al. (2023) C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. Nature 622:611–618.
96. Martin M, Vermeiren S, Bostaille N, Eubelen M, Spitzer D, Vermeersch M, Profaci CP, Pozuelo E, Toussay X, Raman-Nair J, et al. (2022) Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 375:eabm4459.
97. Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B, Rosenbauer J, Stegmaier J, Mikut R, Ozbek S, Nienhaus GU, et al. (2018) Wnt/PCP controls spreading of Wnt/beta-catenin signals by cytonemes in vertebrates. Elife 7:e36953. Miao Y, Ha A, de Lau W, Yuki K, Santos AJM, You C, Geurts MH, Puschhof J,
98. Pleguezuelos-Manzano C, Peng WC, et al. (2020) Next-generation surrogate Wnts support organoid growth and deconvolute Frizzled pleiotropy in vivo. Cell Stem Cell 27:840–851.e6. e846.
99. Micka M and Bryja V (2021) Can we pharmacologically target Dishevelled: the key signal transducer in the Wnt pathways? Handb Exp Pharmacol 269:117–135. Mihara E, Hirai H, Yamamoto H, Tamura-Kawakami K, Matano M, Kikuchi A, Sato
100. T, and Takagi J (2016) Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/alpha-albumin. Elife 5:e11621.
101. Mittermeier L and Virshup DM (2022) An itch for things remote: the journey of Wnts. Curr Top Dev Biol 150:91–128.
102. Morgillo F, Amendola G, Della Corte CM, Giacomelli C, Botta L, Di Maro S, Messere A, Ciaramella V, Taliani S, Marinelli L, et al. (2017) Dual MET and SMO negative modulators overcome resistance to EGFR inhibitors in human nonsmall cell lung cancer. J Med Chem 60:7447–7458.
103. Myers BR, Neahring L, Zhang Y, Roberts KJ, and Beachy PA (2017) Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci U S A 114:E11141–E11150.
104. Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, et al. (2023) Targeted alveolar regeneration with Frizzled-specific agonists. Cell 186:2995–3012.e15. e2915.
105. Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH, Covey DF, and Rohatgi R (2012) Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 8:211–220.
106. Naz G, Pasternack SM, Perrin C, Mattheisen M, Refke M, Khan S, Gul A, Simons M, Ahmad W, and Betz RC (2012) FZD6 encoding the Wnt receptor frizzled 6 is mutated in autosomal-recessive nail dysplasia. Brit J Dermatol 166:1088–1094.
107. Neumann S, Coudreuse DYM, van der Westhuyzen DR, Eckhardt ERM, Korswagen HC, Schmitz G, and Sprong H (2009) Mammalian Wnt3a is released on lipoprotein particles. Traffic 10:334–343.
108. Nguyen H, Chen H, Vuppalapaty M, Whisler E, Logas KR, Sampathkumar P, Fletcher RB, Sura A, Suen N, Gupta S, et al. (2022) SZN-413, a FZD4 agonist, as a potential novel therapeutic for the treatment of diabetic retinopathy. Transl Vis Sci Technol 11:19.
109. Nikopoulos K, Venselaar H, Collin RWJ, Riveiro-Alvarez R, Boonstra FN, Hooymans JMM, Mukhopadhyay A, Shears D, van Bers M, de Wijs IJ, et al. (2010) Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Hum Mutat 31:656–666.
110. Nygaard R, Yu J, Kim J, Ross DR, Parisi G, Clarke OB, Virshup DM, and Mancia F (2021) Structural basis of WLS/Evi-mediated Wnt transport and secretion. Cell 184:194–206.e14.
111. O’Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K, Sunahara R, et al. (2017) Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Sci Signal 10:eaal3395.
112. Okashah N, Wright SC, Kawakami K, Mathiasen S, Zhou J, Lu S, Javitch JA, Inoue A, Bouvier M, and Lambert NA (2020) Agonist-induced formation of unproductive receptor-G(12) complexes. Proc Natl Acad Sci U S A 117:21723–21730.
113. Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum ST, Che T, Gavin AC, McCorvy JD, Roth BL, et al. (2020) TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol 16:841–849
114. Pa´ndy-Szekeres G, Caroli J, Mamyrbekov A, Kermani AA, Keseru} GM, Kooistra AJ, and Gloriam DE (2023) GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res 51:D395–D402.
115. Park HW, Kim YC, Yu B, Moroishi T, Mo J-S, Plouffe SW, Meng Z, Lin KC, Yu F-X, Alexander CM, et al. (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162:780–794.
116. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong W-H, Folk RW, Broussard GJ, Liang R, Jang MJ, et al. (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:eaat4422.
117. Patriarchi T, Cho JR, Merten K, Marley A, Broussard GJ, Liang R, Williams J, Nimmerjahn A, von Zastrow M, Gradinaru V, et al. (2019) Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators. Nat Protoc 14:3471–3505.
118. Pau MS, Gao S, Malbon CC, Wang H-Y, and Bertalovitz AC (2015) The intracellular loop 2 F328S Frizzled-4 mutation implicated in familial exudative vitreoretinopathy impairs Dishevelled recruitment. J Mol Signal 10:5.
119. Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, et al. (2018) A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 10:1157–1167.
120. Penela P, Ribas C, Sa´nchez-Madrid F, and Mayor F Jr (2019) G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 76:4423–4446.
121. Piccolo S, Dupont S, and Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312.
122. Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, Nigsch F, Xie Y, Roma G, Donovan A, Marti P, et al. (2016) The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 18:467–479.
123. Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA, Hannoush RN, and Virshup DM (2013) Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res 73:502–507.
124. Qi X, Friedberg L, De Bose-Boyd R, Long T, and Li X (2020) Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat Chem Biol 16:1368–1375.
125. Qi X, Liu H, Thompson B, McDonald J, Zhang C, and Li X (2019) Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature 571:279–283.
126. Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, Elnatan D, Jaishankar P, Bisignano P, Garcia-Gonzalo FR, et al. (2018) Cilia-associated oxysterols activate Smoothened. Mol Cell 72:316–327.e5. e315.
127. Riccio G, Bottone S, La Regina G, Badolati N, Passacantilli S, Rossi GB, Accardo A, Dentice M, Silvestri R, Novellino E, et al. (2018) A negative allosteric modulator of WNT receptor Frizzled 4 switches into an allosteric agonist. Biochemistry 57:839–851.
128. Riquelme R, Li L, Gambrill A, and Barria A (2023) ROR2 homodimerization is sufficient to activate a neuronal Wnt/calcium signaling pathway. J Biol Chem 299:105350.
129. Savarese M, Spinelli E, Gandolfo F, Lemma V, Di Fruscio G, Padoan R, Morescalchi F, D’Agostino M, Savoldi G, Semeraro F, et al. (2014) Familial exudative vitreoretinopathy caused by a homozygous mutation in TSPAN12 in a cystic fibrosis infant. Ophthalmic Genet 35:184–186.
130. Schihada H, Ma X, Zabel U, Vischer HF, Schulte G, Leurs R, Pockes S, and Lohse MJ (2020) Development of a conformational histamine H(3) receptor biosensor for the synchronous screening of agonists and inverse agonists. ACS Sens 5:1734–1742.
131. Schihada H, Shekhani R, and Schulte G (2021b) Quantitative assessment of constitutive G protein-coupled receptor activity with BRET-based G protein biosensors. Sci Signal 14:eabf1653.
132. Schulte G, Scharf MM, Bous J, Voss JH, Gratz L, and Kozielewicz P (2024) Frizzleds act as dynamic pharmacological entities. Trends Pharmacol Sci 45:419–429.
133. Semenov MV, Habas R, Macdonald BT, and He X (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131:1378.
134. Sever N, Mann RK, Xu L, Snell WJ, Hernandez-Lara CI, Porter NA, and Beachy PA (2016) Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 113:5904–5909.
135. Shi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan Z-Y, Perry K, Englander SW, et al. (2021) ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT- recognition modes. Cell Rep 37:109834.
136. Siebold C and Rohatgi R (2023) The inseparable relationship between cholesterol and Hedgehog signaling. Annu Rev Biochem 92:273–298.
137. Strakova K, Kowalski-Jahn M, Gybel T, Valnohova J, Dhople VM, Harnos J, Bernatik O, Ganji RS, Zdrahal Z, Mulder J, et al. (2018) Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization. J Biol Chem 293:18477–18493.
138. Tsutsumi N, Hwang S, Waghray D, Hansen S, Jude KM, Wang N, Miao Y, Glassman CR, Caveney NA, Janda CY, et al. (2023) Structure of the Wnt- Frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc Natl Acad Sci U S A 120:e2218238120.
139. Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C, et al. (2020) Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife 9:e58464.
140. Vallon M, Yuki K, Nguyen TD, Chang J, Yuan J, Siepe D, Miao Y, Essler M, Noda M, Garcia KC, et al. (2018) A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability. Cell Rep 25:339–349.e9. e339.
141. Valnohova J, Kowalski-Jahn M, Sunahara RK, and Schulte G (2018) Functional dissection of the N-terminal extracellular domains of Frizzled 6 reveals their roles for receptor localization and Dishevelled recruitment. J Biol Chem 293:17875–17887.
142. Van Amerongen R, Mikels A, and Nusse R (2008) Alternative wnt signaling is initiated by distinct receptors. Sci Signal 1:re9.
143. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, et al. (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis. Elife 4:e06489.
144. Vo A-DP, Kim S-K, Yang MY, Ondrus AE, and Goddard 3rd WA (2023) Fully activated structure of the sterol-bound Smoothened GPCR-Gi protein complex. Proc Natl Acad Sci U S A 120:e2300919120.
145. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, et al. (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355.
146. Wess J, Oteng A-B, Rivera-Gonzalez O, Gurevich EV, and Gurevich VV (2023) beta- Arrestins: structure, function, physiology, and pharmacological perspectives. Pharmacol Rev 75:854–884.
147. Wright SC, Avet C, Gaitonde SA, Muneta-Arrate I, Le Gouill C, Hogue M, Breton B, Koutsilieri S, Alarcia RD, H´eroux M, et al. (2024) Conformation- and activation-based BRET sensors differentially report on GPCR-G protein coupling. Sci Signal 17:eadi4747.
148. Yadav V, Jobe N, Mehdawi L, and Andersson T (2021) Targeting oncogenic WNT signalling with WNT signalling-derived peptides. Handb Exp Pharmacol 269: 279–303.
149. Zhang C, Brunt L, Ono Y, Rogers S, and Scholpp S (2023a) Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 625:126–133.
150. Zhang J-J, Zhang W, Zhang L, Hu M, Xu Q-J, and Xu Y (2022) Design, synthesis and biological evaluation of novel 4-aminopiperidine derivatives as SMO/ERK dual inhibitors. Bioorg Med Chem 74:117051.
151. Zhang L, Abedin M, Jo H-N, Levey J, Dinh QC, Chen Z, Angers S, and Junge HJ (2023b) A Frizzled4-LRP5 agonist promotes blood-retina barrier function by inducing a Norrin-like transcriptional response. iScience 26:107415.
152. Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, and Xu F (2024) A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov 10:3.
153. Zhao Y, Ren J, Hillier J, Lu W, and Jones EY (2020) Antiepileptic drug carbamazepine binds to a novel pocket on the Wnt receptor Frizzled-8. J Med Chem 63:3252–3260.
154. Zhong ZA, Michalski MN, Stevens PD, Sall EA, and Williams BO (2021) Regulation of Wnt receptor activity: implications for therapeutic development in colon cancer. J Biol Chem 296:100782
Published
2024-10-09
How to Cite
Joshi Ankur, Soni Priyanka, Khemani Purva, Malviya Neelesh, Malviya Sapna, & Kharia Anil. (2024). The Class F of G Protein-Coupled Receptors: International Union of Basic and Clinical Pharmacology CXV. Revista Electronica De Veterinaria, 25(2), 426-454. https://doi.org/10.69980/redvet.v25i2.1394