Computational Identification of Azole Derivatives Targeting the mTOR Rapamycin Binding Domain for Therapeutic Development
Abstract
This study investigates the potential of eight azole-derived compounds (KR1–KR8) as inhibitors of the mammalian target of rapamycin (mTOR), a critical protein involved in regulating autophagy and associated with diseases such as cancer, obesity, and aging. Using in silico molecular docking, we evaluated the interaction of these compounds with the rapamycin binding (FRB) domain of mTOR. Drug-likeness assessments revealed that all compounds adhered to Lipinski’s rule, indicating favorable oral bioavailability, with optimal values for molecular weight, LogP, and total polar surface area (TPSA). In addition, the compounds demonstrated low toxicity profiles and high absorption potential, with minimal interactions with cytochrome P450 enzymes, suggesting a favorable pharmacokinetic profile. Among the tested compounds, KR4 showed the most promising results, exhibiting a strong binding affinity to mTOR with a docking score of -7.61 kcal/mol. KR4 specifically interacted with key residues of the FRB domain (LEU-2031, SER-2035, PHE-2039, TRP-2101, TYR-2105, and PHE-2108), closely resembling the binding mode of rapamycin. Further Prime MM-GBSA analysis confirmed KR4’s stable binding within the mTOR binding site, with a predicted binding energy of -3.00 kcal/mol. These findings suggest that KR4 holds significant potential as a lead compound for developing selective mTOR inhibitors, which could provide new avenues for targeted therapies in cancer and other mTOR-related diseases.
References
2. Ahmed, A. H. (2019). Insilico pharmakinetics and molecular docking- studies of lead compounds derived from Diospyros mespiliformis. Pharmatutor, 7(3), 31–37.
3. Al‐Hussain, S. A., Alshehrei, F., Zaki, M. E., Harras, M. F., Farghaly, T. A., & Muhammad, Z. A. (2021). Fluorinated hydrazonoyl chlorides as precursors for synthesis of antimicrobial azoles. Journal of Heterocyclic Chemistry, 58(2), 589-602.
4. Aman, Y., Schmauck-Medina, T., Hansen, M., Morimoto, R. I., Simon, A. K., Bjedov, I., ... & Fang, E. F. (2021). Autophagy in healthy aging and disease. Nature aging, 1(8), 634-650.
5. Amin, M. L. (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, (7), 27–34. https://doi.org/10.4137/DTI.S12519
6. Anderson, A. C. (2003). The Process of Structure-Based Drug Design. Chemistry & Biology, 10, 787–797. https://doi.org/0.1016/j .c he m bi ol . 20 03 . 09 .0 0
7. Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
8. Cannalire, R., Barreca, M. L., Manfroni, G., & Cecchetti, V. (2016). A Journey around the Medicinal Chemistry of Hepatitis C Virus Inhibitors Targeting NS4B: From Target to Preclinical Drug Candidates. Journal of Medicinal Chemistry, 59(1), 16–41. https://doi.org/10.1021/acs.jmedchem.5b00825
9. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
10. Cheng, L. C. W. (2004). 2,4,6-trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists. Journal of Medicinal Chemistry, 47(26), 6529–6540. https://doi.org/10.1021/jm049448r
11. Chiarini, F., Evangelisti, C., McCubrey, J. A., & Martelli, A. M. (2015). Current treatment strategies for inhibiting mTOR in cancer. Trends in Pharmacological Sciences, 36(2), 124–135. https://doi.org/10.1016/j.tips.2014.11.004
12. Clark, D. E. (1999). Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. Journal of Pharmaceutical Science, 88(8), 807–814. https://doi.org/10.1021/js9804011
13. Cornu, M., Albert, V., & Hall, M. N. (2013). MTOR in aging, metabolism, and cancer. Current Opinion in Genetics and Development, 23(1), 53–62. https://doi.org/10.1016/j.gde.2012.12.005
14. Cross, J. B., Thompson, D. C., Rai, B. K., Baber, J. C., Fan, K. Y., Hu, Y., & Humblet, C. (2009). Comparison of several molecular docking programs: Pose prediction and virtual screening accuracy. Journal of Chemical Information and Modeling, 49(6), 1455–1474. https://doi.org/10.1021/ci900056c
15. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717
16. Dienstmann, R., Rodon, J., Serra, V., & Tabernero, J. (2014). Picking the point of inhibition: A comparative review of PI3K/AKT/mTOR pathway inhibitors. Molecular Cancer Therapeutics, 13(5), 1021–1031. https://doi.org/10.1158/1535-7163.MCT-13-0639
17. Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: A web server for the insilico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1), 53–58. https://doi.org/10.1093/nar/gku401
18. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34(WEB. SERV. ISS.), 116–118. https://doi.org/10.1093/nar/gkl282
19. Gilbert, D. (2004). Bioinformatics software resources. Briefings in Bioinformatics, 5(3), 300–304. https://doi.org/10.1093/bib/5.3.300
20. Herrera-Calderon, O., Yepes-Pérez, A. F., Quintero-Saumeth, J., Rojas-Armas, J. P., Palomino-Pacheco, M., Ortiz-Sánchez, J. M., … Andía-Ayme, V. (2020). Carvacrol: An insilico approach of a candidate drug on HER2, PI3Kα, mTOR, HER-α, PR, and EGFR receptors in the breast cancer. Evidence-Based Complementary and Alternative Medicine, https://doi.org/10.1155/2020/8830665
21. Jabir NR, Firoz CK, Bhushan A, Tabrez S, Kamal MA (2016). The use of Azoles Containing Natural Products in Cancer Prevention and Treatment: An Overview. Anticancer Agents Med Chem, 18: 6–14. [PMID: 27198985 DOI: 10.2174/1871520616666160520112839]
22. Kaur, K., Kumar, V., & Gupta, G. K. (2015). Trifluoromethylpyrazoles as anti-inflammatory and antibacterial agents: A review. Journal of Fluorine Chemistry, 178, 306-326.
23. Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M (2016). The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 120, 170-201.
24. Krämer, S. D., & Testa, B. (2009). The Biochemistry of Drug Metabolism - An Introduction. Chemistry & Biodiversity, 6(7), 1144–1144. https://doi.org/10.1002/cbdv.200990008
25. Levin, G. M. (2012). P-glycoprotein: Why this drug transporter may be clinically important. Current Psychiatry, 11(3), 38–40.
26. Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4), 463–477. https://doi.org/10.1016/S1534-5807(04)00099-1
27. Li, J. (2001). for Discovering Leads. 40(2).
28. Limban, C., Nuţă, D. C., Chiriţă, C., Negreș, S., Arsene, A. L., Goumenou, M., … Sarigiannis, D. A. (2018). The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicology Reports, 5, 943–953. https://doi.org/10.1016/j.toxrep.2018.08.017
29. Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
30. Lokesh R, Jeyakanthan J, Kannabiran K. (2020) Targeting VEGFR2 protein by marine Streptomyces globosus VITLGK011‐derived compound BECA: An in vitro and in silico analysis. J Basic Microbiol.1–11. https://doi.org/10.1002/jobm.202000461
31. Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., … Urban, L. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403), 361–367. https://doi.org/10.1038/nature11159
32. Lu, Z., Dono, K., Gotoh, K., Shibata, M., Koike, M., Marubashi, S., … Monden, M. (2005). Participation of autophagy in the degeneration process of rat hepatocytes after transplantation following prolonged cold preservation. Archives of Histology and Cytology, 68, pp. 71–80. https://doi.org/10.1679/aohc.68.71
33. Lynch, T., & Price, A. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 76(3), 391–396.
34. Mahmoud, H. K., Farghaly, T. A., Abdulwahab, H. G., Al-Qurashi, N. T., & Shaaban, M. R. (2020). Novel 2-indolinone thiazole hybrids as sunitinib analogues: Design, synthesis, and potent VEGFR-2 inhibition with potential anti-renal cancer activity. European Journal of Medicinal Chemistry, 208, 112752.
35. Mohanty, M., & Mohanty, P. S. (2023). Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chemie-Chemical Monthly, 1-25.
36. Mondal, P., Natesh, J., Abdul salam, A. ajees, Thiyagarajan, S., & Meeran, S. M. (2020). Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation. Journal of Biomolecular Structure and Dynamics, 40(6), 2715–2732. https://doi.org/10.1080/07391102.2020.1842246
37. Monika, G., Punam, G., Sarbjot, S., & Gupta, G. D. (2010). An overview on molecular docking. International Journal of Drug Development & Research, 2(2).
38. Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
39. Muhammad, Z. A., Farghaly, T. A., Althagafi, I., Al‐Hussain, S. A., Zaki, M. E., & Harras, M. F. (2021). Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID‐19. Journal of heterocyclic chemistry, 58(6), 1286-1301.
40. Paramashivam, S. K., Elayaperumal, K., Natarajan, B., Ramamoorthy, M., Balasubramanian, S., & Dhiraviam, K. (2015). Insilico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation, 11(2), 73–84. https://doi.org/10.6026/97320630011073
41. Patrick Walters, W., Stahl, M. T., & Murcko, M. A. (1998). Virtual screening - An overview. Drug Discovery Today, 3(4), 160–178. https://doi.org/10.1016/s1359-6446(97)01163-x
42. Pattar, S. V., Adhoni, S. A., Kamanavalli, C. M., & Kumbar, S. S. (2020). In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1-10.
43. Pinanti, H. N., Nafisah, W., Christina, Y. I., Widodo, W., Rifa’i, M., & Djati, M. S. (2021). Molecular docking studies of biflavonoids from Selaginella doederleinii hieron as anticancer agents to inhibit mTOR. AIP Conference Proceedings, 2353(May). https://doi.org/10.1063/5.0052704
44. Reggiori, F., & Klionsky, D. J. (2002). Autophagy in the eukaryotic cell. Eukaryotic Cell, 1(1), 11–21. https://doi.org/10.1128/EC.01.1.11-21.2002
45. Saxton, R. A., & Sabatini, D. M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell, 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004
46. Srimai, V., Ramesh, M., Satya Parameshwar, K., & Parthasarathy, T. (2013). Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Medicinal Chemistry Research, 22(11), 5314–5323. https://doi.org/10.1007/s00044-013-0532-5
47. SYSTÈMES, D. (2016). Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment, Release 2017. Dassault Syst mes. Retrieved from http://accelrys.com/products/collaborative-science/biovia-discovery-studio/
48. Vasanthanathan, P., Taboureau, O., Oostenbrink, C., Vermeulen, N. P. E., Olsen, L., & Jorgensen, F. S. (2009). Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metabolism & Disposition, 37(3), 658–664. https://doi.org/10.1124/dmd.108.023507
49. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
50. Vennila, K. N., Prabha, K., Sunny, D., Madhuri, S., & Elango, K. P. (2019). Preparation and biological evaluation of quinoline amines as anticancer agents and its molecular docking. Medicinal Chemistry Research, 28(8), 1298–1307. https://doi.org/10.1007/s00044-019-02374-w
51. Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., … Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry, 49(20), 5912–5931. https://doi.org/10.1021/jm050362n
52. Yamauchi, Y., Izumi, Y., Yamamoto, J., & Nomori, H. (2014). Coadministration of erlotinib and curcumin augmentatively reduces cell viability in lung cancer cells. Phytotherapy Research, 28(5), 728–735. https://doi.org/10.1002/ptr.5056
53. Yasmin, S., Mhlongo, N. N., Soliman, M. E., GR, S., & Jayaprakash, V. (2017). Comparative Design, Insilico Dockingand Predictive ADME/ TOX Properties of Some Novel 2, 4-hydroxy Derivatives of Thiazolidine-2, 4-diones as PPARÎ3 Modulator. Journal of Pharmaceutical Chemistry, 4(2), 11–19. https://doi.org/10.14805/jphchem.2017.art74
54. Zhan, P., Chen, X., Li, D., Fang, Z., De Clercq, E., & Liu, X. (2011). HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and impliations for drug design. Medicinal Research Reviews, 1(E1), 72. https://doi.org/10.1002/med.20241
55. Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., ... & Qin, S. (2021). Cytochrome P450 enzymes and drug metabolism in humans. International journal of molecular sciences, 22(23), 12808.
56. Zulkipli, N. N., Zakaria, R., Long, I., Abdullah, S. F., Muhammad, E. F., Wahab, H. A., & Sasongko, T. H. (2020). Insilico Analyses and Cytotoxicity Study of Asiaticoside and Asiatic Acid from Malaysian Plant as Potential mTOR Inhibitors. Molecules, 25(17), 1–15. https://doi.org/10.3390/molecules25173991.