Effect Of Polymicrobial Peri-Implant Plaque On The Morphological Degradation And Titanium Ion Leaching Of The Zimmer Biomet Osseotite Implant
Abstract
Peri-implantitis, a biofilm-mediated disease, is a major cause of late implant failure. This in vitro study investigated the degradation of a high-roughness titanium dental implant (Zimmer Biomet Osseotite, dual-acid etched surface) exposed to patient-derived polymicrobial plaque. Ten sterile implants were incubated individually with plaque samples collected from patients (n=10) diagnosed with mild/moderate peri-implantitis for 30 days. Microbial analysis identified six predominant species, with alpha-Haemolytic Streptococcus (40%) being the most prevalent. All tested species (100%) showed Sulphur-reducing and Iron-oxidizing activities, indicative of high corrosive potential. Scanning Electron Microscopy (SEM) revealed severe surface degradation, including a statistically significant increase in thread diameter (1.3 +/- 0.04 um) and extensive formation of interconnected pits and fissures. Cracks were predominantly observed on the abutment (70.0%). Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) confirmed the release of titanium (Ti) ions into the broth, ranging from 45 ppm to 65 ppm. These findings demonstrate the heightened vulnerability of the highly-roughened DAE surface to aggressive, biofilm-induced biocorrosion.
References
2. Socransky, S. S., & Haffajee, A. D. (2005). Periodontal microbial ecology. Periodontology 2000, 38(1), 135-187.
3. Heitz-Mayfield, L. J. A., & Salvi, G. E. (2018). Peri-implant diseases. Periodontology 2000, 76(1), 177-190.
4. Wennerberg, A., & Albrektsson, T. (2009). Effects of surface topography on bone integration and mechanical fixation of implants. International Journal of Oral & Maxillofacial Implants, 24 Suppl, 26-37.
5. Souza, J. G., Cochetti, J., & Cacciatore, M. (2017). Microbiologically influenced corrosion (MIC) on dental implants: a narrative review. Journal of Oral Implantology, 43(6), 464-472.
6. Albrektsson, T., et al. (2017). The interface bone-implant and its susceptibility to biofilm. Journal of Oral Rehabilitation, 44(9), 675-681.
7. Cochran, D. L., et al. (1999). A comparison of the Osseotite implant surface and the standard machined implant surface in the miniature pig. Journal of Periodontology, 70(12), 1435-1445.
8. Lessa, R. M., et al. (2020). Microbiologically induced corrosion of titanium dental implants: A review of the biological mechanisms and clinical implications. Materials, 13(15), 3393.
9. Renvert, S., & Giovannoli, J. (2020). The role of titanium particles in peri-implantitis: a literature review. Clinical Implant Dentistry and Related Research, 22(3), 263-270.
10. Olmedo, D., et al. (2018). Titanium particles shed from dental implants: an in vivo study in rabbits. Clinical Oral Implants Research, 29(1), 12-18.
11. Al-Haj Husain, A., et al. (2020). The effect of surface modifications on the corrosion behavior of titanium dental implants. Coatings, 10(9), 834.
12. Shibli, J. A., et al. (2012). Microbiological analysis of peri-implantitis sites using checkerboard DNA-DNA hybridization. Journal of Periodontology, 83(12), 1500-1508.
13. Assunção, W. G., et al. (2019). The influence of Streptococcus species biofilm on titanium surface roughness and corrosion. Journal of Applied Oral Science, 27.
14. Little, B., & Lee, J. (2007). Microbiologically influenced corrosion. Corrosion Engineering: Science and Technology, 42(2), 131-143.
15. Gout, C., et al. (2018). The role of sulfur-reducing bacteria in dental implant failure. Journal of Dental Research, 97(11), 1251-1258.
16. Buser, D., Lussi, A., & Hirt, H. P. (2018). Implant-Supported Restorations: Principles and Clinical Practice. Quintessence Publishing.
17. Romanos, G. E., & Nentwig, G. H. (2009). The effect of the implant-abutment interface on the microleakage of bacteria. Clinical Implant Dentistry and Related Research, 11(2), 173-178.
18. Safi, F. I., & Al-Qutub, M. A. (2019). The biological consequences of the microgap at the implant-abutment interface: a review. International Journal of Implant Dentistry, 5(1), 1-10.
19. Gittard, S. D., et al. (2012). Development of a dynamic in vitro model for studying the effects of oral biofilm on titanium implant surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(2), 350-360.
20. Wang, M., et al. (2021). The synergistic effect of mechanical load and bacteria on the corrosion of titanium dental implants. Biofouling, 37(2), 163-176.

