Synthesis of Mono and Di -2,6-Dichloro-3- Methyl aniline Organophosphate esters and Characterization by FTIR Spectroscopy and Biological Activity – Acute Oral Toxicity Study.
Abstract
In this study, spectroscopic characterization, and assessment of acute oral toxicity of mono and di-2, 6-dichloro-3-metylaniline organophosphate esters derived from 2,6-dichloro-3-methylaniline are the main objective. We created the Mono-2, 6-dichloro-3-methylaniline organophosphate ester and di-2, 6-dichloro-3-methylaniline organophosphate ester and acute toxicity evaluations were carried out in vivo in accordance with OECD guidelines as per graded doses viz. 5, 50, 300, and 2000 mg/kg and the structural elucidation was done by using FTIR and in a 1:1 molar ratio, the mono 2, 6-dichloro-3-methylaniline organophosphate ester was created using Auger and Dupis' method. The Mono-2,6-dichloro-3-methylaniline organophosphate ester was identified as a white, odorless solid powder that melts on 330°C and gives 75% yield, a 2:1 molar ratio of 2, 6-dichloro-3-methylaniline to phosphoric acid, the Auger and Dupis method was also used to create the Di-2, 6-dichloro-3-methylaniline organophosphate ester. The synthesized Di-2,6-dichloro-3-methylaniline organophosphate ester, was isolated as a white powder possessing a sweet and aromatic odour, with 72% yield and a melts on 336°C. The compound exhibited a solid state and uniform crystalline morphology, reflecting good thermal stability.
References
2. Liu, Y., Gong, S., Ye, L., Li, J., Liu, C., Chen, D., ... & Su, G. (2021). Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. Environment international, 155, 106691.
3. Verma, A., &Andleep, F. Synthesis of Mono-(4-Chlorothio) Phenyl Phosphate Ester and Its Characterization from IR Absorption Spectra. Carbon, 32, 31-15.
4. Singh, M. K. (2008). Synthesis and characterisation of some phosphate esters. Oriental Journal of Chemistry, 24(2), 749.
5. Douglas, A. S., & Donald, M. W. (1971). Principles of instrumental analysis. Holt, Rinhart, Winston, New York.
6. Greaves, A. K., Letcher, R. J., Chen, D., McGoldrick, D. J., Gauthier, L. T., & Backus, S. M. (2016). Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. Environmental Research, 150, 255-263.
7. Kashimawo, A., Ouserigha, E., & Bunu, S. (2025). Antiproliferative and Acute Toxicity Assay of Hydroethanolic Extract of Smilax kraussiana as an Ethnomedicinal Plant. Asian Journal of Biology, 21(5), 5-17.
8. Chen, Y., Yang, Z., Nian, B., Yu, C., Maimaiti, D., Chai, M., ... & Xu, D. (2024). Mechanisms of neurotoxicity of organophosphate pesticides and their relation to neurological disorders. Neuropsychiatric Disease and Treatment, 2237-2254
9. He, W., Ding, J., Gao, N., Zhu, L., Zhu, L., & Feng, J. (2024). Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Archives of Toxicology, 98(1), 233-250.
10. Ung, S. P. M., & Li, C. J. (2023). From rocks to bioactive compounds: a journey through the global P (V) organophosphorus industry and its sustainability. RSC Sustainability, 1(1), 11-37.
11. Jessen, H. J., Ahmed, N., & Hofer, A. (2014). Phosphate esters and anhydrides–recent strategies targeting natures favoured modifications. Organic & biomolecular chemistry, 12(22), 3526-3530.
12. Demkowicz, S., Rachon, J., Daśko, M., & Kozak, W. (2016). Selected organophosphorus compounds with biological activity. Applications in medicine. RSC advances, 6(9), 7101-7112.
13. Wang, Y., Zhao, Y., Han, X., Wang, J., Wu, C., Zhuang, Y., ... & Li, W. (2023). A review of organophosphate esters in aquatic environments: levels, distribution, and human exposure. Water, 15(9), 1790.
14. Wang, X., Zhong, W., Xiao, B., Liu, Q., Yang, L., Covaci, A., & Zhu, L. (2019). Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism. Environment International, 125, 25-32.
15. Wei, G. L., Li, D. Q., Zhuo, M. N., Liao, Y. S., Xie, Z. Y., Guo, T. L., ... & Liang, Z. Q. (2015). Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environmental pollution, 196, 29-46.
16. Liu, Y., Gong, S., Ye, L., Li, J., Liu, C., Chen, D., ... & Su, G. (2021). Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. Environment international, 155, 106691.
17. Fugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., ... & Grabowsky, S. (2019). Revisiting a historical concept by using quantum crystallography: Are phosphate, sulfate and perchlorate anions hypervalent? Chemistry–A European Journal, 25(26), 6523-6532.
18. Cundari, T. R. (2013). Chemical bonding involving d-orbitals. Chemical Communications, 49(83), 9521-9525.
19. Magnusson, E. (1990). Hyper coordinate molecules of second-row elements: d functions or d orbitals? Journal of the American Chemical Society, 112(22), 7940-7951.
20. Gamoke, B., Neff, D., & Simons, J. (2009). Nature of PO bonds in phosphates. The Journal of Physical Chemistry A, 113(19), 5677-5684.
21. Rajani, P., Gopakumar, G., Nagarajan, S., & Rao, C. V. S. B. (2021). Does the basicity of phosphoryl oxygen change with alkyl chain length in phosphate ligands?.Chemical Physics Letters, 775, 138641.
22. Chesnut, D. B. (2003). Atoms-in-molecules and electron localization function study of the phosphoryl bond. The Journal of Physical Chemistry A, 107(21), 4307-4313.
23. Corbridge, D. E. (1971). The structural chemistry of phosphates. Bulletin de Minéralogie, 94(3), 271-299.
24. Rai, U. S., & Symons, M. C. (1994). EPR data do not support the PO representation for trialkyl phosphates and phosphine oxides or sulfides. Journal of the Chemical Society, Faraday Transactions, 90(18), 2649-2652.
25. Kumler, W. D., & Eiler, J. J. (1943). The acid strength of mono and diesters of phosphoric acid. The n-alkyl esters from methyl to butyl, the esters of biological importance, and the natural guanidine phosphoric acids. Journal of the American Chemical Society, 65(12), 2355-2361.
26. BD, D. (1958). On the importance of being ionized. Archives of Biochemistry and Biophysics, 78(2), 497-509.
27. Westheimer, F. H. (1987). Why nature chose phosphates. Science, 235(4793), 1173-1178.
28. Greaves, A. K., & Letcher, R. J. (2017). A review of organophosphate esters in the environment from biological effects to distribution and fate. Bulletin of environmental contamination and toxicology, 98, 2-7.
29. McDonough, C. A., De Silva, A. O., Sun, C., Cabrerizo, A., Adelman, D., Soltwedel, T., ... & Lohmann, R. (2018). Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: Arctic surface water distributions and net transport through Fram Strait. Environmental science & technology, 52(11), 6208-6216.
30. World Health Organization, UNEP United Nations Environment Programme, & World Organisation for Animal Health. (2022). One health joint plan of action (2022‒2026): working together for the health of humans, animals, plants and the environment. World Health Organization.
31. van den Berg, H., da Silva Bezerra, H. S., Al-Eryani, S., Chanda, E., Nagpal, B. N., Knox, T. B., ... &Yadav, R. S. (2021). Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Scientific reports, 11(1), 23867.
32. Peter, J. V., Sudarsan, T. I., & Moran, J. L. (2014). Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 18(11), 735.
33. O’brien, R. D., Thorn, G. D., & Fisher, R. W. (1958). New organophosphate insecticides developed on rational principles. Journal of Economic Entomology, 51(5), 714-718.
34. Salgado, V. L., & David, M. D. (2017). Chance and design in proinsecticide discovery. Pest management science, 73(4), 723-730.
35. Gage, J. C. (1953). A cholinesterase inhibitor derived from OO-diethyl Op-nitrophenylthiophosphate in vivo. Biochemical Journal, 54(3), 426.
36. Heath, D. F., Lane, D. W. J., & Park, P. O. (1955). The decomposition of some organophosphorus insecticides and related compounds in plants. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 239(663), 191-214.
37. Spencer, E. Y., O'Brien, R. D., & White, R. W. (1957). Metabolism of Insecticides, Permanganate Oxidation Products of Schradan. Journal of Agricultural and Food Chemistry, 5(2), 123-127.
38. Metcalf, R. L., & March, R. B. (1953). Further studies on the mode of action of organic thionophosphate insecticides. Annals of the Entomological Society of America, 46(1), 63-74.
39. Spencer, E. Y., & O'Brien, R. D. (1953). Schradan, Enhancement of Anticholinesterase Activity in Octamethylpyrophosphoramide by Chlorine. Journal of Agricultural and Food Chemistry, 1(11), 716-720.
40. O'Brien, R. D. (1961). The effect of SKF 525A (2-diethylaminoethyl 2: 2-diphenylvalerate hydrochloride) on organophosphate metabolism in insects and mammals. Biochemical Journal, 79(2), 229.
41. Clune, A. L., Ryan, P. B., & Barr, D. B. (2012). Have regulatory efforts to reduce organophosphorus insecticide exposures been effective?. Environmental health perspectives, 120(4), 521-525.
42. Stone, D. L., Sudakin, D. L., & Jenkins, J. J. (2009). Longitudinal trends in organophosphate incidents reported to the National Pesticide Information Center, 1995–2007. Environmental Health, 8, 1-8.
43. Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., ... & Barbosa, F. (2023). Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. Environmental Research, 228, 115811.
44. Galt, R. E. (2008). Beyond the circle of poison: significant shifts in the global pesticide complex, 1976–2008. Global Environmental Change, 18(4), 786-799.
45. Maggi, F., Tang, F. H., la Cecilia, D., &McBratney, A. (2019). PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific data, 6(1), 170.
46. Umetsu, N., &Shirai, Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2), 54-74.
47. Gray, G. M., &Hammitt, J. K. (2000). Risk/risk trade‐offs in pesticide regulation: an exploratory analysis of the public health effects of a ban on organophosphate and carbamate pesticides. Risk Analysis, 20(5), 665-680.
48. Siegfried, B. D., &Scharf, M. E. (2001). Mechanisms of organophosphate resistance in insects. In Biochemical sites of insecticide action and resistance (pp. 269-291). Berlin, Heidelberg: Springer Berlin Heidelberg.
49. Van der Veen, I., & de Boer, J. (2012). Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88(10), 1119-1153.
50. Schmitt, E. (2007). Phosphorus-based flame retardants for thermoplastics. Plastics, Additives and Compounding, 9(3), 26-30.
51. He, H., Gao, Z., Zhu, D., Guo, J., Yang, S., Li, S., ...& Sun, C. (2017). Assessing bioaccessibility and bioavailability of chlorinated organophosphorus flame retardants in sediments. Chemosphere, 189, 239-246.
52. Blum, A., Behl, M., Birnbaum, L. S., Diamond, M. L., Phillips, A., Singla, V., &Venier, M. (2019). Organophosphate ester flame retardants: are they a regrettable substitution for polybrominateddiphenyl ethers?. Environmental science & technology letters, 6(11), 638-649.
53. Du, J., Li, H., Xu, S., Zhou, Q., Jin, M., & Tang, J. (2019). A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environmental Science and Pollution Research, 26, 22126-22136.
54. Nijman, M. Kaumera as flame retardant–the opportunities and obstacles to societal implementation according to the SBMI comparing it to the Lean Startup Model.
55. Weil, E. D., &Levchik, S. V. (2000). Phosphorus flame retardants. Kirk‐Othmer Encyclopedia of Chemical Technology, 1-34.
56. Pawlowski, K. H., &Schartel, B. (2007). Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis (diphenyl phosphate) and bisphenolAbis (diphenyl phosphate) in polycarbonate/acrylonitrile–butadiene–styrene blends. Polymer International, 56(11), 1404-1414.
57. Craig, P. H., & Barth, M. L. (1999). Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 2(4), 281-300.
58. Truong, J. W., Diamond, M. L., Helm, P. A., &Jantunen, L. M. (2017). Isomers of tris (chloropropyl) phosphate (TCPP) in technical mixtures and environmental samples. Analytical and Bioanalytical Chemistry, 409, 6989-6997.
59. Amiri, R., Bissram, M. J., Hashemihedeshi, M., Dorman, F. L., Megson, D., &Jobst, K. J. (2023). Differentiating Toxic and Nontoxic Tricresyl Phosphate Isomers Using Ion–Molecule Reactions with Oxygen. Journal of the American Society for Mass Spectrometry, 34(4), 640-648.
60. Duarte, D. J., Rutten, J. M., van den Berg, M., &Westerink, R. H. (2017). In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Neurotoxicology, 59, 222-230.
61. Cadogan, D. F., &Howick, C. J. (2000). Plasticizers. Kirk‐Othmer Encyclopedia of Chemical Technology.
62. Rahman, M., &Brazel, C. S. (2004). The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progress in polymer science, 29(12), 1223-1248.
63. William Coaker, A. (2003). Fire and flame retardants for PVC. Journal of Vinyl and Additive Technology, 9(3), 108-115.
64. Grossman, R. F. (Ed.). (2008). Handbook of vinyl formulating. John Wiley & Sons.
65. Levchik, S. V., & Weil, E. D. (2005). Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polymers for advanced technologies, 16(10), 707-716.
66. Phillips, W. D., Placek, D. C., & Marino, M. P. 77 Neutral Phosphate Esters. In Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, Third Edition (pp. 77-102). CRC Press.
67. Guan, B., Pochopien, B. A., & Wright, D. S. (2016). The chemistry, mechanism and function of tricresyl phosphate (TCP) as an anti‐wear lubricant additive. Lubrication Science, 28(5), 257-265.
68. Johnson, D. W., &Hils, J. E. (2013). Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants, 1(4), 132-148.
69. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y.& Sharma, S. (2022). Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. The International Journal of Advanced Manufacturing Technology, 120(1), 1-27.
70. Hidayah, N. N., &Abidin, S. Z. (2018). The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Minerals Engineering, 121, 146-157.
71. Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10-28.
72. Paiva, A. P., & Malik, P. (2004). Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. Journal of Radioanalytical and Nuclear Chemistry, 261, 485-496.
73. Kaneko, T. M. (1985). Pesticide formulations and application systems: fourth symposium: a symposium sponsored by ASTM Committee E-35 on Pesticides, New Orleans, La., 2-3 Nov. 1983 (Vol. 875). ASTM International.
74. Miller, D., Wiener, E. M., Turowski, A., Thunig, C., & Hoffmann, H. (1999). O/W emulsions for cosmetics products stabilized by alkyl phosphates—rheology and storage tests. Colloids and Surfaces A: physicochemical and engineering aspects, 152(1-2), 155-160.
75. Petroianu, G. A. (2010). Toxicity of phosphor esters: Willy Lange (1900–1976) and Gerda von Krueger (1907–after 1970). Die Pharmazie-An International Journal of Pharmaceutical Sciences, 65(10), 776-780.
76. Chai, P. R., Hayes, B. D., Erickson, T. B., & Boyer, E. W. (2018). Novichok agents: a historical, current, and toxicological perspective. Toxicology communications, 2(1), 45-48.
77. Vale, J. A., Marrs, T. C., & Maynard, R. L. (2018). Novichok: a murderous nerve agent attack in the UK. Clinical Toxicology, 56(11), 1093-1097.
78. Westheimer, F. H. (1987). Why nature chose phosphates. Science, 235(4793), 1173-1178.
79. Lopez-Canut, V., Marti, S., Bertran, J., Moliner, V., &Tunon, I. (2009). Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase. The Journal of Physical Chemistry B, 113(22), 7816-7824.
80. Balakrishna, A.; Reddy, C. S.; Naik, S. K.; Manjunath, M.; Raju, C. N.; Bull. Chem. Soc. Ethiop., 23(1), 69-75, 2009.
81. Katz, M. J., Moon, S. Y., Mondloch, J. E., Beyzavi, M. H., Stephenson, C. J., Hupp, J. T., &Farha, O. K. (2015). Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2. Chemical Science, 6(4), 2286-2291.
82. Cleland, W. W., &Hengge, A. C. (2006). Enzymatic mechanisms of phosphate and sulfate transfer. Chemical reviews, 106(8), 3252-3278.
83. Kluger, R., &Mundle, S. O. (2010). The role of pre-association in Brønsted acid-catalyzed decarboxylation and related processes. Advances in Physical Organic Chemistry, 44, 357.
84. Lassila, J. K., Zalatan, J. G., &Herschlag, D. (2011). Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annual review of biochemistry, 80(1), 669-702.
85. Callahan, S. M., Cornell, N. W., & Dunlap, P. V. (1995). Purification and properties of periplasmic 3’: 5’-cyclic nucleotide phosphodiesterase: a novel zinc-containing enzyme from the marine symbiotic bacterium Vibrio fischeri. Journal of Biological Chemistry, 270(29), 17627-17632.
86. Sorensen-Stowell, K., &Hengge, A. C. (2006). Thermodynamic origin of the increased rate of hydrolysis of phosphate and phosphorothioate esters in DMSO/water mixtures. The Journal of organic chemistry, 71(19), 7180-7184.
87. Arkin, M. (2005). Protein–protein interactions and cancer: small molecules going in for the kill. Current opinion in chemical biology, 9(3), 317-324.
88. Rahman, M., & Brazel, C. S. (2004). The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progress in polymer science, 29(12), 1223-1248.
89. Rudnick, L. R., Buchanan, R. P., & Medina, F. (2006). Evaluation of oxidation‐mediated volatility of hydrocarbon lubricant base fluids. Journal of Synthetic Lubrication, 23(1), 11-26.
90. Liu, Y. L. (2006). The development and present situation of domestic turbine oils criteria in service. Lubric. Oil, 21, 9-13.
91. Guo, P., He, W., & García-Naranjo, J. C. (2014). Degradation of phosphate ester hydraulic fluid in power station turbines investigated by a three-magnet unilateral magnet array. Sensors, 14(4), 6797-6805.
92. Wright, J. (2009). Phosphate ester fluids-benefits and limitations. Mach. Lubric, 11(1), 3.
93. Bieber, H. E., Klaus, E. E., & Tewksbury, E. J. (1968). A study of tricresyl phosphate as an additive for boundary lubrication. ASLE TRANSACTIONS, 11(2), 155-161.
94. Back, T. G., Baron, D. L., & Yang, K. (1993). Desulfurization with nickel and cobalt boride: scope, selectivity, stereochemistry, and deuterium-labeling studies. The Journal of Organic Chemistry, 58(9), 2407-2413.
95. Johnson, D. W., & Hils, J. E. (2013). Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants, 1(4), 132-148.
96. Johnson, D. W., & Hils, J. E. (2013). Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants, 1(4), 132-148.
97. Li, H., Jin, Y., Fan, B., Qi, R., Cheng, X., &Peng, S. (2017). Synthesis and surface activity of mono-and diphosphate ester mixture with different alkyl chain length. Journal of Dispersion Science and Technology, 38(5), 704-711.
98. Gotmukle, S. B., &Bhagwat, S. S. (2013). Synthesis and surface activity of bisphosphategemini surfactants. Journal of Surfactants and Detergents, 16, 63-70.
99. Chen, K. M., Lin, L. H., Dong, M. Y., Wang, C. F., & Hwang, M. C. (2010). Preparation and surface activity of phosphated alkyl oligoglucosides. Journal of Surfactants and Detergents, 13(4), 417-422.
100. Kennedy, P. M., Lowry, J. B., &Conlan, L. L. (2000). Phosphate rather than surfactant accounts for the main contribution to enhanced fibre digestibility resulting from treatment with boiling neutral detergent. Animal feed science and technology, 86(3-4), 177-190.
101. Plass, J., Emeis, D., &Blümich, B. (2001). 31P nuclear magnetic resonance studies on alkyl phosphate emulsifiers in cosmetic oil‐in‐water emulsions. Journal of Surfactants and Detergents, 4(4), 379-384.
102. Brandán, S. A., Díaz, S. B., González, J. L., Disalvo, E. A., &Altabef, A. B. (2007). Experimental and theoretical study of the hydration of phosphate groups in esters of biological interest. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 66(4-5), 884-897.
103. Kang, M. S., Yang, Y., Jee, S. S., Kwon, S. J., Lee, E. S., &Bae, J. Y. (2011). Enhanced photovoltaic performances of dye-sensitized solar cell using self-charring phosphate ester surfactant. Materials Chemistry and Physics, 130(1-2), 203-210.
104. Imokawa, G., Tsutsumi, H., & Kurosaki, T. (1978). Surface activity and cutaneous effects of monoalkyl phosphate surfactants. Journal of the American Oil Chemists' Society, 55(11), 839-843.
105. Hsiue, G. H., Chu, L. W., & Lin, I. N. (2007). Optimized phosphate ester structure for the dispersion of nano-sized barium titanate in proper non-aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1-3), 212-220.
106. Paseiro-Cerrato, R., Dejager, L., & Begley, T. H. (2019). Additives, Inks and Other Migrant Substances in Food Contact Materials.
107. Lamouroux, C., Virelizier, H., Moulin, C., Tabet, J. C., & Jankowski, C. K. (2000). Direct determination of dibutyl and monobutyl phosphate in a tributyl phosphate/nitric aqueous-phase system by electrospray mass spectrometry. Analytical Chemistry, 72(6), 1186-1191.
108. Du, Z. L., Zhou, D. L., Chen, Y., Chen, M., & Zhu, P. X. (2010). Surface properties of butanol phosphate esters in alkali solutions. Journal of surfactants and detergents, 13(2), 201-206.

