Digestive Dynamics: Microbes and Metabolites as Functions of Canine Gastrointestinal Wellbeing

  • R Kavitha, Mehul Chudasma, Sriom
Keywords: Canines, Digestive System, Gastrointestinal (GI), Well-Being, Microbiota, and Therapeutic Approaches

Abstract

The GI (Gastrointestinal) tract, or digestive system, is the primary emphasis of this article, which investigates the specifics of the canine microbiome. It analyzes the wide range of microbes that inhabit the gut and the significant impact that diet has the structure and operation of the microbiome in preserving the general health of canines. Furthermore, this review delves into the organization, strength, and degeneration of the microbiome in the gut over various stages of a canine's living, providing insights into the variables that impact microbial resilience and variety. Developing solutions to support and preserve an appropriate canine microbiome requires a comprehension of these interactions. Focusing on the consequences of disturbances in the effect of gastrointestinal bacteria on the well-being of canines, this article looked at the intricate link between the microbiome as well as GI disorders in canines. It enhances our knowledge of the microbiome's function in illness origin and development by examining microbial changes linked to a variety of GI ailments. The paper also discusses the influence of canine GI illnesses on the microbiota and therapeutic approaches for them. In the context of managing disease, an examination of therapeutic interventions such as food alterations, probiotics, and antibiotics offers knowledge on such strategies influence on the gut microbiota composition and function. This review's main objective is to enhance comprehension of the complex connection between canines’ microbiome and general well-being by combining existing research on the microbiome in normal canines and its changes in illness states.

References

Chai, R., Tai, Z., Zhu, Y., Chai, C., Chen, Z., & Zhu, Q. (2022). Symbiotic microorganisms: prospects for treating atopic dermatitis. Expert Opinion on Biological Therapy, 22(7), 911-927.DOI: 10.1080/14712598.2022.2089560

Josephs-Spaulding, J., Krogh, T. J., Rettig, H. C., Lyng, M., Chkonia, M., Waschina, S., ... &Kaleta, C. (2021). Recurrent urinary tract infections: unraveling the complicated environment of uncomplicated UTIs. Frontiers in Cellular and Infection Microbiology, 11, 562525. DOI: 10.3389/fcimb.2021.562525

VanPool, C. S., &VanPool, T. L. (2023). Neurology, Physiology, and the Mind/Spirit Interface. In An Anthropological Study of Spirits (pp. 199-234). Cham: Springer Nature Switzerland.DOI: 10.1007/978-3-031-25920-3_7

Suchodolski, J. S. (2022). Analysis of the gut microbiome in dogs and cats. Veterinary Clinical Pathology, 50, 6-17.DOI: 10.1111/vcp.13031

Holmberg, T. (2019). Walking, eating, sleeping. Rhythm analysis of human/dog intimacy. Emotion, space and society, 31, 26-31.DOI: 10.1016/j.emospa.2019.03.002

Kovacic, M. (2023). Between animated cells and animated cels: symbiotic turn and animation in multispecies life. Science as Culture, 1-31. 1-31. DOI: 10.1080/09505431.2023.2240811

Costa, M., &Weese, J. S. (2019). Methods and basic concepts for microbiota assessment. The Veterinary Journal, 249, 10-15.DOI: 10.1016/j.tvjl.2019.05.005

Bornstein, K., Gryan, G., Chang, E. S., Marchler-Bauer, A., & Schneider, V. A. (2023). The NIH Comparative Genomics Resource: addressing the promises and challenges of comparative genomics on human health. BMC genomics, 24(1), 575. DOI: 10.1186/s12864-023-09643-4

Alessandri, G., Milani, C., Mancabelli, L., Mangifesta, M., Lugli, G. A., Viappiani, A., ... & Ventura, M. (2019). Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environmental Microbiology, 21(4), 1331-1343.DOI: 10.1111/1462-2920.14540

Patil, A., Singh, N., &Pawar, N. (2023). The Dynamic Interplay Between Gut Health and Dietary Options: A Systematic Review. DOI: 10.20944/preprints202308.0795.v1

Tuniyazi, M., Hu, X., Fu, Y., & Zhang, N. (2022). Canine fecal microbiota transplantation: Current application and possible mechanisms. Veterinary Sciences, 9(8), 396.DOI: 10.3390/vetsci9080396

Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J., &Knippels, L. M. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients, 13(3), 886.DOI: 10.3390/nu13030886

Zhang, L., Wang, L., Dai, Y., Tao, T., Wang, J., Wu, Y., ... & Zhang, J. (2021). Effect of sow intestinal flora on the formation of endometritis. Frontiers in veterinary science, 8, 663956.DOI: 10.3389/fvets.2021.663956

Geary, E. L., Oba, P. M., Applegate, C. C., Clark, L. V., Fields, C. J., & Swanson, K. S. (2022). Effects of a mildly cooked human-grade dog diet on gene expression, skin and coat health measures, and fecal microbiota of healthy adult dogs. Journal of animal science, 100(10), skac265.DOI: 10.1093/jas/skac265

Huang, Z., Pan, Z., Yang, R., Bi, Y., &Xiong, X. (2020). The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 11(4), 635-654.DOI: 10.1080/19490976.2019.1704142

Deng, F., Wang, C., Li, D., Peng, Y., Deng, L., Zhao, Y., ... & Li, Y. (2023). The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host’s dietary adaption to bamboo. Microbiome, 11(1), 180.DOI: 10.1186/s40168-023-01603-0

Zhu, L. F., Chen, X., Ahmad, Z., Peng, Y., & Chang, M. W. (2020). A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication, 12(2), 025026.DOI: 10.1088/1758-5090/ab78

Hernandez, J., Rhimi, S., Kriaa, A., Mariaule, V., Boudaya, H., Drut, A., ... &Maguin, E. (2022). Domestic environment and gut microbiota: lessons from pet dogs. Microorganisms, 10(5), 949.DOI:10.3390/microorganisms10050949

Zeigler, M. K., & Vander Wyst, K. B. (2023). Microbial associations and transfers across the One Health Triad effect on human and animal adiposity and temperament: a protocol for an observational pilot study. Frontiers in Public Health, 11.DOI: 10.3389/fpubh.2023.1225188

Lin, D. M., Koskella, B., Ritz, N. L., Lin, D., Carroll-Portillo, A., & Lin, H. C. (2019). Transplanting fecal virus-like particles reduces high-fat diet-induced small intestinal bacterial overgrowth in mice. Frontiers in Cellular and Infection Microbiology, 9, 348. DOI: 10.3389/fcimb.2019.00348

SchianoMoriello, A., Di Marzo, V., &Petrosino, S. (2022). Mutual links between the endocannabinoidome and the gut microbiome, with special reference to companion animals: A nutritional viewpoint. Animals, 12(3), 348.DOI: 10.3390/ani12030348

Garrigues, Q., Apper, E., Chastant, S., & Mila, H. (2022). Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Frontiers in Veterinary Science, 9, 964649.DOI: 10.3389/fvets.2022.964649

Takáčová, M., Bomba, A., Tóthová, C., Micháľová, A., &Turňa, H. (2022). Any future for fecal microbiota transplantation as a novel strategy for gut microbiota modulation in human and veterinary medicine? Life, 12(5), 723.DOI: 10.3390/life12050723

Colborn, A. S., Kuntze, C. C., Gadsden, G. I., & Harris, N. C. (2020). Spatial variation in diet–microbe associations across populations of a generalist North American carnivore. Journal of Animal Ecology, 89(8), 1952-1960. DOI: 10.1111/1365-2656.13266

Fritsch, D. A., Jackson, M. I., Wernimont, S. M., Feld, G. K., Badri, D. V., Brejda, J. J., ... & Gross, K. L. (2023). Adding a polyphenol-rich fiber bundle to food impacts the gastrointestinal microbiome and metabolome in dogs. Frontiers in Veterinary Science, 9, 1039032.DOI: 10.3389/fvets.2022.1039032

Kiernan, D. P., O’Doherty, J. V., & Sweeney, T. (2023). The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals, 13(19), 2996.DOI: 10.3390/ani13192996

Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G., &Dinan, T. G. (2021). The role of the gut microbiome in the development of schizophrenia. Schizophrenia Research, 234, 4-23. DOI: 10.1016/j.schres.2020.02.010

Dai, Y., Shen, Z., Khachatryan, L. G., Vadiyan, D. E., Karampoor, S., &Mirzaei, R. (2023). Unraveling Mechanistic Insights into the Role of Microbiome in Neurogenic Hypertension: A Comprehensive Review. Pathology-Research and Practice, 154740. DOI: 10.1016/j.prp.2023.154740

Tousoulis, D., Guzik, T., Padro, T., Duncker, D. J., De Luca, G., Eringa, E., ... &Crea, F. (2022). Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovascular Research, 118(16), 3171-3182.DOI: 10.1093/cvr/cvac057

Chaitman, J., Ziese, A. L., Pilla, R., Minamoto, Y., Blake, A. B., Guard, B. C., ... &Suchodolski, J. S. (2020). Fecal microbial and metabolic profiles in dogs with acute diarrhea receiving either fecal microbiota transplantation or oral metronidazole. Frontiers in veterinary science, 7, 192. DOI: 10.3389/fvets.2020.00192

Published
2024-01-01
How to Cite
R Kavitha, Mehul Chudasma, Sriom. (2024). Digestive Dynamics: Microbes and Metabolites as Functions of Canine Gastrointestinal Wellbeing. Revista Electronica De Veterinaria, 24(3), 98-105. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/400
Section
Articles