Metallothionein Defensive Strategies against Metal Overload in Farm Animals

  • Nachappa MN, Dhyan Chandra Yadav, Chandana Maji
Keywords: Metal Overload, Metallothionein (MTs), proteins and minerals, animal's health

Abstract

The comprehensive research highlights the possible health effects of metal overload, which is the condition of farm animals having an excess of metallic components like lead or copper. The study, which spans the years 2019 through 2023, offers a thorough review of defense mechanisms with a particular emphasis on metallothionein (MT) defensive strategies. Utilizing information from 37 pertinent research studies, the paper discusses important metals such as Ni, Cd, Cu, Fe, Zn, As ,Co, Pb, Hg and Cr, clarifying their effects and limits, particularly concerning topical and intramuscular applications. Particular focus is placed on the harmful effects of mercury pertaining to the reproductive, immune and central neurological systems. To lessen the negative impacts of metal overload on animal health, the article supports regulatory actions as well as environmental pollution mitigation. Together with antioxidants, metal-binding proteins, enzymatic and non-enzymatic defense mechanisms, MT becomes an essential defensive strategy. The importance of vitamins, minerals, proteins and phyto-nutrients in preventing oxidative stress brought by an excess of metals is covered in the last section. MT induction provides farm animals with a useful defense against metal overload while preserving physiological balance because metal-binding proteins like metalloreductase and ceruloplasmin maintain copper-iron balance. Metallothionein, crucial for farm animals' metal homeostasis, is essential for protecting against metal overload. Understanding its regulation is crucial for sustainable animal husbandry practices.

References

Sethi, S. (2023). Phytochelatins: Heavy Metal Detoxifiers in Plants. In Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment (pp. 361-379). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-2598-8

Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through the food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. DOI:https://doi.org/10.33263/LIANBS102.21482166

Zhu, Y. T., Wan, C., Lin, J. H., Hammes, H. P., & Zhang, C. (2022). Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022, 12, 403. Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease, 39. DOI:https://doi.org/10.3390/biom11111575

Angulo-Bejarano, P. I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635. DOI:https://doi.org/10.3390/plants10040635

Witkowska, D., Słowik, J., & Chilicka, K. (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26(19), 6060. DOI:https://doi.org/10.3390/molecules26196060

Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., ... & Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98-106. DOI:https://doi.org/10.1016/j.envexpbot.2018.10.017

Le Saux, A., David, E., Betoulle, S., Bultelle, F., Rocher, B., Barjhoux, I., & Cosio, C. (2020). New insights into cellular impacts of metals in aquatic animals. Environments, 7(6), 46. DOI:https://doi.org/10.3390/environments7060046

Dasharathy, S., Arjunan, S., Maliyur Basavaraju, A., Murugasen, V., Ramachandran, S., Keshav, R., & Murugan, R. (2022). Mutagenic, carcinogenic, and teratogenic effects of heavy metals. Evidence-Based Complementary and Alternative Medicine, 2022. DOI:https://doi.org/10.1155/2022/8011953

Tarabay, H. H., Abol-Enein, H., Awadalla, A., Mortada, W. I., & Abdel-Aziz, A. F. (2022). Gene expression and oxidative stress markers profile associated with toxic metals in patients with renal cell carcinoma. Molecular Biology Reports, 49(2), 1161-1169. DOI:https://doi.org/10.1007/s11033-021-06944-3

Espinosa, C. D., & Stein, H. H. (2021). Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. Journal of Animal Science and Biotechnology, 12, 1-12. DOI:https://doi.org/10.1186/s40104-020-00533-3

Pandit, S., Savla, N., Sonawane, J. M., Sani, A. M. D., Gupta, P. K., Mathuriya, A. S., ... & Prasad, R. (2021). Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation, 7(3), 169. DOI:https://doi.org/10.3390/fermentation7030169

Yiannikourides, A., & Latunde-Dada, G. O. (2019). A short review of iron metabolism and pathophysiology of iron disorders. Medicines, 6(3), 85. DOI:https://doi.org/10.3390/medicines6030085

Nikolaeva, O., Myroshnychenko, M., Pavlova, O., Kovaltsova, M., Bibichenko, V., Koliada, O., ... & Shutova, N. (2022). Pathophysiology of organs and systems: self-study methodical instructions for international students (majoring in «Medicine» and «Dentistry»).

Żwierełło, W., Styburski, D., Maruszewska, A., Piorun, K., Skórka-Majewicz, M., Czerwińska, M., ... & Gutowska, I. (2020). Bioelements in the treatment of burn injuries–The complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium, and magnesium). Journal of Trace Elements in Medicine and Biology, 62, 126616. DOI: https://doi.org/10.1016/j.jtemb.2020.126616

McLaughlin, M. J., Smolders, E., Zhao, F. J., Grant, C., & Montalvo, D. (2021). Managing cadmium in agricultural systems. Advances in Agronomy, 166, 1-129. DOI:https://doi.org/10.1016/bs.agron.2020.10.004

Liu, W., Guo, A., Bao, X., Li, Q., Liu, L., Zhang, X., & Chen, X. (2022). Statistics and analyses of food safety inspection data and mining early warning information based on chemical hazards. Lwt, 165, 113746. DOI:https://doi.org/10.1016/j.lwt.2022.113746

Nawaz, A., Khattak, N. N., Khan, M. S., Nangyal, H., Sabri, S., & Shakir, M. (2020). Deficiency of vitamin B12 and its relation with neurological disorders: a critical review. The Journal of Basic and Applied Zoology, 81(1), 10. DOI:https://doi.org/10.1186/s41936-020-00148-0

Zhang, Y., Luo, J., Zhu, T., Zhang, X., Jin, M., Jiao, L., ... & Zhou, Q. (2022). Dietary chromium could improve growth, antioxidant capacity, chromium accumulation in tissues, and expression of genes involved in glucose and lipid metabolism in juvenile mud crab Scylla paramamosain. Aquaculture Reports, 23, 101088. DOI:https://doi.org/10.1016/j.aqrep.2022.101088

Lindemann, M. D., & Lu, N. (2019). Use of chromium as an animal feed supplement. In The nutritional biochemistry of chromium (III) (pp. 79-125). Elsevier. DOI:https://doi.org/10.1016/B978-0-444-64121-2.00003-9

Sarlak, Z., Hosseini, H., Garavand, F., Mohammadi, R., & Rouhi, M. (2022). The occurrence of lead in animal source foods in Iran in the 2010s decade: a systematic review. Biological trace element research, 1-20. DOI: https://doi.org/10.1007/s12011-021-02787-y

Massányi, P., Massányi, M., Madeddu, R., Stawarz, R., & Lukáč, N. (2020). Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics, 8(4), 94. DOI:https://doi.org/10.3390/toxics8040094

Rahman, M. M., Hossain, K. F. B., Banik, S., Sikder, M. T., Akter, M., Bondad, S. E. C., ... & Kurasaki, M. (2019). Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: a review. Ecotoxicology and environmental safety, 168, 146-163. DOI: https://doi.org/10.1016/j.ecoenv.2018.10.054

Sun, Q., Li, Y., Shi, L., Hussain, R., Mehmood, K., Tang, Z., & Zhang, H. (2022). Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology, 469, 153136. DOI:https://doi.org/10.1016/j.ecoenv.2018.10.054

Di Meo, S., & Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity, 2020. DOI:https://doi.org/10.1155/2020/9829176

Demirci-Cekic, S., Özkan, G., Avan, A. N., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of pharmaceutical and biomedical analysis, 209, 114477. DOI:https://doi.org/10.1016/j.jpba.2021.114477

Tyagi, R., Singh, P. K., & Tiwari, A. (2023). Cyanobacteria as the Source of Antioxidants. DOI: 10.5772/intechopen.110598

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. DOI:https://doi.org/10.1016/j.ejmech.2020.112891

Rathna Priya, T. S., Eliazer Nelson, A. R. L., Ravichandran, K., & Antony, U. (2019). Nutritional and functional properties of colored rice varieties of South India: a review. Journal of Ethnic Foods, 6(1), 1-11. DOI: https://doi.org/10.1186/s42779-019-0017-3

Xiao, J., Khan, M. Z., Ma, Y., Alugongo, G. M., Ma, J., Chen, T., ... & Cao, Z. (2021). The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants, 10(10), 1555. DOI:https://doi.org/10.3390/antiox10101555

Feng, J., Zheng, Y., Guo, M., Ares, I., Martínez, M., Lopez-Torres, B., ... & Martínez, M. A. (2023). Oxidative stress, the blood–brain barrier, and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharmaceutica Sinica B, 13(10), 3988-4024. DOI:https://doi.org/10.1016/j.apsb.2023.07.010

Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption, and health. Oxygen, 2(2), 48-78. DOI: https://doi.org/10.3390/oxygen2020006

Gwozdzinski, K., Pieniazek, A., & Gwozdzinski, L. (2021). Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxidative medicine and cellular longevity, 2021, 1-19. DOI:https://doi.org/10.1155/2021/6639199

Câmara, J. S., Albuquerque, B. R., Aguiar, J., Corrêa, R. C., Gonçalves, J. L., Granato, D., ... & Ferreira, I. C. (2020). Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods, 10(1), 37. DOI:https://doi.org/10.3390/foods10010037

Georganas, A., Giamouri, E., Pappas, A. C., Zoidis, E., Goliomytis, M., & Simitzis, P. (2023). Utilization of agro-industrial by-products for sustainable poultry production. Sustainability, 15(4), 3679. DOI: https://doi.org/10.3390/su15043679

Yuan, Y., Wang, W., Nie, M., Yan, C., Wang, P., & Ding, M. (2023). Visible light-mediated activation of periodate for bisphenol A degradation in the presence of Fe3+ and gallic acid at neutral pH. Chemical Engineering Journal, 147541. DOI:https://doi.org/10.1016/j.cej.2023.147541

Liu, J., Liu, Z., Wang, W., & Tian, Y. (2021). Real‐time Tracking and Sensing of Cu+ and Cu2+ with a Single SERS Probe in the Live Brain: Toward Understanding Why Copper Ions Were Increased upon Ischemia. Angewandte Chemie, 133(39), 21521-21529. DOI:https://doi.org/10.1002/ange.202106193

Chen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X., & Li, C. (2020). The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Archiv-European Journal of Physiology, 472, 1415-1429. DOI:https://doi.org/10.1007/s00424-020-02412-2

Published
2024-01-01
How to Cite
Nachappa MN, Dhyan Chandra Yadav, Chandana Maji. (2024). Metallothionein Defensive Strategies against Metal Overload in Farm Animals. Revista Electronica De Veterinaria, 24(3), 276-287. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/417
Section
Articles