Precision Livestock Pig Farming System for Evaluating Animal Welfare: An Exhaustive Review

  • Yaduvir Singh, Deepak Mehta, Pawan Chaudhary
Keywords: Precision Livestock Farming (PLF), Pig, Animal Welfare, Farm, Feed, Sustainable

Abstract

The term sustainable and moral pig farming methods are becoming more and more important as the need for pork production develops around worldwide. By using cutting-edge technology to monitor, manage and enhance animal welfare, precision livestock farming (PLF) that has emerged as a viable approach to address this issue. Pig farming is a form of animal husbandry that uses domestic pigs are raised and grown to use as livestock. To better understand the ways that present PLF technologies aid in pig welfare assessments, this study set out to investigate that possibility. Pigs are exhibit characteristics distinctive to their species and have more opportunities to behavior linked to exercise with posture, eating as well as drinking, other behaviors, physical state and health were measured. Pig farming is referred to as pig husbandry, to represents the disciplined breeding and care of domestic pigs for a variety of uses, mostly the production of meat. Pigs are carefully managed during all stages of their lives from birth to market or breeding age in that agricultural process. This comprehensive review investigates the use of PLF in assessing and advancing pig farming's animal welfare. A description of the essential elements of PLF systems, such as sensor technology, data analytics and automated monitoring equipment, provides at the initial of the assessment. A review of the study concludes that PLF has the potential to improve animal well-being in pig farming.

Author Biography

Yaduvir Singh, Deepak Mehta, Pawan Chaudhary

Mr. Yaduvir Singh1*, Deepak Mehta2, Pawan Chaudhary3

*1Assistant Professor, Department of CSE (Artificial intelligence), Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India, Email Id- yaduyash@niet.co.in, Orcid Id-0000-0002-2552-4797

2Associate Professor, Department of Computer Sceince and Information Technology, Jain (Deemed to be University), Bangalore, India, Email Id- m.deepak@jainuniversity.ac.in , Orcid Id- 0000-0001-8502-1203

3Assistant Professor, Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar Pradesh, India, Email Id- pawan.chaudhary@muit.in, Orcid Id- 0009-0000-7596-2341

References

Albernaz-Gonçalves, R., Olmos Antillón, G., & Hötzel, M. J. (2022). Linking animal welfare and antibiotic use in pig farming—A review. Animals, 12(2), 216.Doi: 10.3390/ani12020216

Delsart, M., Pol, F., Dufour, B., Rose, N., & Fablet, C. (2020). Pig farming in alternative systems: strengths and challenges in terms of animal welfare, biosecurity, animal health, and pork safety. Agriculture, 10(7), 261.Doi:10.3390/agriculture10070261

Albernaz-Gonçalves, R., Olmos, G., & Hötzel, M. J. (2021). My pigs are ok, why change?–animal welfare accounts of pig farmers. Animal, 15(3), 100154.Doi:10.1016/j.animal.2020.100154

Pol, F., Kling-Eveillard, F., Champigneulle, F., Fresnay, E., Ducrocq, M., & Courboulay, V. (2021). Human–animal relationship influences husbandry practices, animal welfare and productivity in pig farming. Animal, 15(2), 100103.Doi:10.1016/j.animal.2020.100103

Racewicz, P., Ludwiczak, A., Skrzypczak, E., Składanowska-Baryza, J., Biesiada, H., Nowak, T., ... & Ślósarz, P. (2021). Welfare health and productivity in commercial pig herds. Animals, 11(4), 1176.Doi:10.3390/ani11041176

Stygar, A. H., Chantziaras, I., Toppari, I., Maes, D., & Niemi, J. K. (2020). High biosecurity and welfare standards in fattening pig farms are associated with reduced antimicrobial use. Animal, 14(10), 2178-2186.Doi:10.1017/S1751731120000828

Hockenhull, J., Main, D. C., & Mullan, S. (2019). ‘Would it sell more pork?’Pig farmers’ perceptions of Real Welfare, the welfare outcome component of their farm assurance scheme. animal, 13(12), 2864-2875.Doi:10.1017/S1751731119000946

Tzanidakis, C., Simitzis, P., Arvanitis, K., & Panagakis, P. (2021). An overview of the current trends in precision pig farming technologies. Livestock Science, 249, 104530.Doi:10.1016/j.livsci.2021.104530

Väärikkälä, S., Hänninen, L., & Nevas, M. (2019). Assessment of welfare problems in Finnish cattle and pig farms based on official inspection reports. Animals, 9(5), 263.Doi:10.3390/ani9050263

Schukat, S., von Plettenberg, L., & Heise, H. (2020). Animal welfare programs in germany—an empirical study on the attitudes of pig farmers. Agriculture, 10(12), 609.Doi:10.3390/agriculture10120609

Leeb, C., Rudolph, G., Bochicchio, D., Edwards, S., Früh, B., Holinger, M., ... & Dippel, S. (2019). Effects of three husbandry systems on health, welfare and productivity of organic pigs. Animal, 13(9), 2025-2033.Doi:10.1017/S1751731119000041

Godyń, D., Nowicki, J., & Herbut, P. (2019). Effects of environmental enrichment on pig welfare—a review. Animals, 9(6), 383.Doi:10.3390/ani9060383

Pietrosemoli, S., & Tang, C. (2020). Animal welfare and production challenges associated with pasture pig systems: A review. Agriculture, 10(6), 223.Doi:10.3390/agriculture10060223

Remus, A., Hauschild, L., Methot, S., & Pomar, C. (2020). Precision livestock farming: real-time estimation of daily protein deposition in growing–finishing pigs. animal, 14(S2), s360-s370.Doi:10.1017/S1751731120001469

Diana, A., Carpentier, L., Piette, D., Boyle, L. A., Berckmans, D., & Norton, T. (2019). An ethogram of biter and bitten pigs during an ear biting event: first step in the development of a Precision Livestock Farming tool. Applied Animal Behaviour Science, 215, 26-36.Doi:10.1016/j.applanim.2019.03.011

Witte, J. H., Gerberding, J., Melching, C., & Gómez, J. M. (2021, July). Evaluation of deep learning instance segmentation models for pig precision livestock farming. In Business Information Systems (pp. 209-220). Doi:10.52825/bis.v1i.59

Gómez, Y., Stygar, A. H., Boumans, I. J., Bokkers, E. A., Pedersen, L. J., Niemi, J. K., ... & Llonch, P. (2021). A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Frontiers in Veterinary Science, 8, 660565.Doi:10.3389/fvets.2021.660565

Maes, D. G., Dewulf, J., Piñeiro, C., Edwards, S., & Kyriazakis, I. (2020). A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of animal science, 98(Supplement_1), S15-S26.Doi:10.1093/jas/skz362

Sandøe, P., Hansen, H. O., Rhode, H. L. H., Houe, H., Palmer, C., Forkman, B., & Christensen, T. (2020). Benchmarking farm animal welfare—A novel tool for cross-country comparison applied to pig production and pork consumption. Animals, 10(6), 955. Doi:10.3390/ani10060955

Peden, R. S., Akaichi, F., Camerlink, I., Boyle, L. A., & Turner, S. P. (2019). Pig farmers’ willingness to pay for management strategies to reduce aggression between pigs. PloS one, 14(11), e0224924.Doi:10.1371/journal.pone.0224924

Argemí-Armengol, I., Villalba, D., Tor, M., Bertolín, J. R., Latorre, M. A., & Álvarez-Rodríguez, J. (2020). Effects of dietary roughage on organic pig performance, behaviour and antioxidants accretion in perirenal adipose tissue. Livestock Science, 241, 104255.Doi:10.1016/j.livsci.2020.104255

Mkwanazi, M. V., Ncobela, C. N., Kanengoni, A. T., & Chimonyo, M. (2019). Effects of environmental enrichment on behaviour, physiology and performance of pigs—A review. Asian-Australasian journal of animal sciences, 32(1), 1.Doi:10.5713%2Fajas.17.0138

Andersen, H. M. L., Kongsted, A. G., & Jakobsen, M. (2020). Pig elimination behavior—A review. Applied Animal Behaviour Science, 222, 104888. Doi:10.1016/j.applanim.2019.104888

Diana, A., Snijders, S., Rieple, A., & Boyle, L. A. (2021). Why do Irish pig farmers use medications? Barriers for effective reduction of antimicrobials in Irish pig production. Irish Veterinary Journal, 74(1), 1-14.Doi:10.1186/s13620-021-00193-3

Little, S. B., Crabb, H. K., Woodward, A. P., Browning, G. F., & Billman-Jacobe, H. (2019). Water medication of growing pigs: sources of between-animal variability in systemic exposure to antimicrobials. Animal, 13(12), 3031-3040. Doi:10.1017/S1751731119001903

Toya, R., Sasaki, Y., Uemura, R., & Sueyoshi, M. (2022). Optimizing antimicrobial use by improving medication adherence among pig producers. Animal Science Journal, 93(1), e13713.Doi:10.1111/asj.13713

Vandael, F., Filippitzi, M. E., Dewulf, J., Daeseleire, E., Eeckhout, M., Devreese, M., & Croubels, S. (2019). Oral group medication in pig production: characterising medicated feed and drinking water systems. Veterinary Record, 185(13), 405-405.Doi:10.1136/vr.105495

Arulmozhi, E., Bhujel, A., Moon, B. E., & Kim, H. T. (2021). The application of cameras in precision pig farming: An overview for swine-keeping professionals. Animals, 11(8), 2343.Doi:10.3390/ani11082343

Pandey, S., Kalwa, U., Kong, T., Guo, B., Gauger, P. C., Peters, D. J., & Yoon, K. J. (2021). Behavioral monitoring tool for pig farmers: Ear tag sensors, machine intelligence, and technology adoption roadmap. Animals, 11(9), 2665.Doi:10.3390/ani11092665

Guo, Q., Sun, Y., Orsini, C., Bolhuis, J. E., de Vlieg, J., Bijma, P., & de With, P. H. (2023). Enhanced camera-based individual pig detection and tracking for smart pig farms. Computers and Electronics in Agriculture, 211, 108009. Doi:10.1016/j.compag.2023.108009

Yeo, U. H., Lee, I. B., Kim, R. W., Lee, S. Y., & Kim, J. G. (2019). Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment. Biosystems engineering, 186, 259-278.Doi:10.1016/j.biosystemseng.2019.08.007

Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., ... & Chen, Z. (2021). Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics. Science of the Total Environment, 756, 144133.Doi:10.1016/j.scitotenv.2020.144133

Secco, C., da Luz, L. M., Pinheiro, E., de Francisco, A. C., Puglieri, F. N., Piekarski, C. M., & Freire, F. M. C. S. (2020). Circular economy in the pig farming chain: Proposing a model for measurement. Journal of Cleaner Production, 260, 121003Doi:10.1016/j.jclepro.2020.121003

Hu, J., Wen, J., Li, H., Duan, W., Fan, S., Xiao, H., & Chen, S. (2022). Experiment and numerical simulation on the fine particle migration behaviors for the collection efficiency enhancement of a wire-plate electrostatic precipitator in pig house. Computers and Electronics in Agriculture, 199, 107145.Doi:10.1016/j.compag.2022.107145

Morris, B. K., Davis, R. B., Brokesh, E., Flippo, D. K., Houser, T. A., Najar-Villarreal, F., ... & Gonzalez, J. M. (2021). Measurement of the three-axis vibration, temperature, and relative humidity profiles of commercial transport trailers for pigs. Journal of Animal Science, 99(2), skab027. Doi:10.1093/jas/skab027

Wang, S., Jiang, H., Qiao, Y., Jiang, S., Lin, H., & Sun, Q. (2022). The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors, 22(17), 6541.Doi:10.3390/s22176541

Shen, W., Ji, N., Yin, Y., Dai, B., Tu, D., Sun, B., ... & Zhao, Y. (2022). Fusion of acoustic and deep features for pig cough sound recognition. Computers and Electronics in Agriculture, 197, 106994.Doi:10.1016/j.compag.2022.106994

Stukelj, M., Hajdinjak, M., & Pusnik, I. (2022). Stress-free measurement of body temperature of pigs by using thermal imaging–Useful fact or wishful thinking. Computers and Electronics in Agriculture, 193, 106656.Doi:10.1016/j.compag.2021.106656

Dalla Costa, O. A., Dalla Costa, F. A., Feddern, V., dos Santos Lopes, L., Coldebella, A., Gregory, N. G., & de Lima, G. J. M. M. (2019). Risk factors associated with pig pre-slaughtering losses. Meat Science, 155, 61-68.Doi:10.1016/j.meatsci.2019.04.020

Brown-Brandl, T. M., Adrion, F., Maselyne, J., Kapun, A., Hessel, E. F., Saeys, W., ... & Gallmann, E. (2019). A review of passive radio frequency identification systems for animal monitoring in livestock facilities. Applied Engineering in Agriculture, 35(4), 579-591Doi: 10.13031/aea.12928) @2019

Zhang, Z., Zhang, H., & Liu, T. (2019). Study on body temperature detection of pig based on infrared technology: A review. Artificial intelligence in agriculture, 1, 14-26. Doi:10.1016/j.aiia.2019.02.002

Cruz, V., Rico, J., Coelho, D., & Baptista, F. (2022). Innovative PLF Tool to Assess Growing-Finishing Pigs’ Welfare. Agronomy, 12(9), 2159.Doi:10.3390/agronomy12092159

Nan, J. I., Yanling, Y. I. N., Weizheng, S. H. E. N., Shengli, K. O. U., Baisheng, D. A. I., & Guowei, W. A. N. G. (2022). Pig Sound Analysis: A Measure of Welfare. Smart Agriculture, 4(2), 19.Doi:10.12133/j.smartag.SA202204004

Published
2024-01-01
How to Cite
et al., Y. S. (2024). Precision Livestock Pig Farming System for Evaluating Animal Welfare: An Exhaustive Review. Revista Electronica De Veterinaria, 24(4), 268-278. Retrieved from https://veterinaria.org/index.php/REDVET/article/view/463
Section
Articles